Radiation doses from 131I treated hyperthyroidism patients versus life style: - a survey

AS. Shah*, Hameedullah, S. Farrukh, KA. Shah, AU. Khan, MR. Khattak

Institute of Radiotherapy & Nuclear Medicine (IRNUM), Peshawar, Pakistan

INTRODUCTION

The radioactive iodine (RAI) is widely used for the treatment of various thyroid disorders since long. In most of the countries the differentiated thyroid cancer (DTC) is treated by admitting the patients in hospital whereas hyperthyroidism patients are treated on outpatient basis (1-7). The safety issues for the patients, their families, comforters, hospital staff and the general public arise with either treatment approach. The radiation hazards are more in treating cases of hyperthyroidism as compared to DTC due to shorter effective half life of 131I in the later application. Therefore at the time of release of the patient from medical confinement, the retained radioactivity in DTC patients is much lower thus causing low risk of radiation exposure to other people. In case of hyperthyroidism treatment the administered radioactivity is much lower as compared to DTC treatment but radiation doses to others are more due to high uptake of RAI by these patients (8-11). The patients undergoing such treatments are advised to restrict their social and work related activities in order to reduce radiation exposure to others, when they return to their families in community (12-15).
radiation protection advice is usually based on residual activity or radiation exposure level and is not specific to an individual patient circumstances or socioeconomic conditions. These advices are generally formulated by the developed countries and are adopted as such in most of the developing countries. In actual practice the compliance to the protection advice depends on life styles and living conditions of the patients. Therefore keeping in view this aspect of RAI treatment, an interview based structured survey was conducted on patients visiting nuclear medicine department of the Institute of Radiotherapy and Nuclear Medicine (IRNUM) Peshawar, Pakistan for the treatment of hyperthyroidism. The aims of this study were to: survey the life styles, living conditions, compliance to safety instructions and to estimate radiation doses to family members, care givers and fellow travelers from the patients undergoing RAI treatment for hyperthyroidism.

MATERIALS AND METHODS

The patients were asked about their living conditions, family set up, number of children, mode of travelling and travelling time back to home from the hospital. The total number of patients inducted in the present survey was 419. The data collected was tabulated and reviewed for completeness. A calibrated dose of 131I (185-1100 MBq) was administered to the patients. The exposure rate from the patient was measured at a distance of one meter from standing position with a hand-held pressurized battery operated $\beta \gamma$ survey meter, Victoreen Model 450P, calibrated from secondary standard dosemetry laboratory, Islamabad. The dose rate was recorded in units of μSvh$^{-1}$. The patients were instructed to sleep alone, drink fluids liberally and avoid prolonged close personal contact with others for the first 2 days. The patients and family members were told that they could resume normal activities thereafter \cite{12-14}. The estimated radiation doses to the maximally exposed person were calculated using equation 2 given in United States Nuclear Regulatory Guide 8.39 \cite{16}.

RESULTS

Three hundred and eighty five patients (93%) resided in joint and 29 (07%) in separate family system as shown in table 1. It was observed that 15.27 % of the patients were males and 84.73 % were females with age wise distribution shown in table 2.

The measured hospital leaving dose rates at one meter from the patients were 5.7, 11.0, 15.7, 18.7, 23.0 and 28.0 μSvh$^{-1}$ for an administered RAI activity of 185, 370, 555, 740, 925 and 1100 MBq respectively. The corresponding radiation doses to others from the patient at one meter using occupancy factor of 0.25 were calculated as 0.76, 1.53, 2.29, 3.06, 3.82 and 4.58 mSv as shown in table 3.

The survey showed that 4.77, 17.66, 22.91, 24.10, 12.66 and 17.90% patients had accommodation consisting of one, two, three, four, five and more than five rooms respectively as shown in table 4.

It was observed that 78.04% patients used public and 21.96% used private transport for travelling back to home following RAI administration. The radiation doses to others during travelling were calculated at 0.1m and 1m.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Status & No of patients (%) \\
\hline
Joint Family & 390 (93) \\
Separate Family & 29 (07) \\
\hline
\end{tabular}
\caption{Family status (N=419).}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Age (Years) & No. of Patients (%) \\
\hline
<16 & 3 (0.7) \\
17 to 28 & 36 (8.59) \\
29 to 40 & 161 (38.42) \\
41 to 50 & 119 (28.4) \\
51 to 60 & 67 (15.9) \\
>60 & 33 (7.8) \\
\hline
\end{tabular}
\caption{Age and sex distribution of patients* **.}
\end{table}

*15.27 % of patients are males
** 84.73 % of patients are females
distance and plotted against travelling time as shown in figures 1 and 2 respectively. It was observed that radiation doses to others at 1m and 0.1m with administered 131I radioactivity of 185, 555 and 1100 MBq increased linearly with the travelling time.

It was also observed that 1.67% of the patients had no sanitary arrangements at home and they used open space in the fields as toilet. The patients residing in localities where there are comparatively better sanitation arrangements had one (31.74%), two (36.04%), three (17.42%) and more than three (13.13%) toilets available as shown in table 5.

The survey showed that 88.07% of the patients had children and out of these 82.33% lived in joint family system whereas 5.73% lived separately. The number of children and the family status showed that 17.18%, 31.50% and 33.65% patients had 1-3, 4-6 and more than 6 children respectively lived in joint family system while 2.86%, 1.91% and 0.95% patients had 1-3, 4-6 and more than 6 children respectively and they lived in separate family system as shown in table 6.

DISCUSSION

This study was carried out in an effort to emphasize the formulation of radiation protection guidelines for the patients undergoing RAI treatment for thyrotoxicosis, in accordance with their lifestyle and living conditions.

Table 3. 131I administered vs average radiation doses.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>131 activity (MBq)</th>
<th>No. of patients (%)</th>
<th>Average leaving dose rate at 1 meter (μSv/h)</th>
<th>Average Dose* to others at 1 meter (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>185</td>
<td>12 (2.88)</td>
<td>5.7</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>370</td>
<td>18 (4.3)</td>
<td>11</td>
<td>1.53</td>
</tr>
<tr>
<td>3</td>
<td>555</td>
<td>99 (23.62)</td>
<td>15.7</td>
<td>2.29</td>
</tr>
<tr>
<td>4</td>
<td>740</td>
<td>233 (55.6)</td>
<td>18.7</td>
<td>3.06</td>
</tr>
<tr>
<td>5</td>
<td>925</td>
<td>47 (11.21)</td>
<td>23</td>
<td>3.82</td>
</tr>
<tr>
<td>6</td>
<td>1100</td>
<td>10 (2.3)</td>
<td>28</td>
<td>4.58</td>
</tr>
</tbody>
</table>

* Average doses to total decay (t=∞) to other individual exposed to the patient at one meter using occupancy factor of 0.25.

Table 4. Status of Patients in relation to No. of rooms in joint / separate system.

<table>
<thead>
<tr>
<th>No. of rooms in home</th>
<th>No. of Patients (%)</th>
<th>Patients living in Joint Family System</th>
<th>Patients living in Separately</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 (4.77)</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>74 (17.66)</td>
<td>69</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>96 (22.91)</td>
<td>90</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>101 (24.10)</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>53 (12.66)</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>More than 5</td>
<td>75 (17.90)</td>
<td>71</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5. Sanitary status of patients.

<table>
<thead>
<tr>
<th>No. of Toilets in home of Patients</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open without flush</td>
<td>07 (1.67)</td>
</tr>
<tr>
<td>With one flush</td>
<td>133 (31.74)</td>
</tr>
<tr>
<td>With two flush</td>
<td>151 (36.04)</td>
</tr>
<tr>
<td>With three flush</td>
<td>73 (17.42)</td>
</tr>
<tr>
<td>More than three flush</td>
<td>55 (13.13)</td>
</tr>
</tbody>
</table>
with RAI (131I) are advised certain restrictions on behavior in order to ensure the radiation safety of all other individuals with whom they may come into contact. Generally it is assumed that the patients are unlikely to create a hazard to other persons. A dose limit of 5 mSv and 1 mSv had been recommended for caregivers and others depending upon the nature and type of their interaction with the patient (17). The compliance to the safety instructions depends upon patient’s literacy level in general and patient living conditions and life styles in particular (18,20).

The overall literacy level of the survey region is 37.26 % (21) which reflects patients low decision making capacity, health education, grasping and understanding the course of RAI treatment. It was observed that most of the patients were not aware of the radioactive nature of their treatment and were unable to comprehend that they would emit radiations which would be harmful for other people. The low literacy level affects the capacity of the patients to comply with the safety instructions like avoiding prolonged contacts and sleeping alone for initial few days.

The life style of the patient undergoing RAI treatment plays a vital role in compliance with safety instructions. In view of socioeconomic and

Table 6. Children status vs family system.

<table>
<thead>
<tr>
<th>Children Status</th>
<th>Joint Families (%)</th>
<th>Separate Families (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 (11.93)</td>
<td>45 (10.74)</td>
<td>05 (1.19)</td>
</tr>
<tr>
<td>With Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369 (88.07)</td>
<td>345 (82.33)</td>
<td>24 (5.73)</td>
</tr>
<tr>
<td>Up to 3 Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 (17.18)</td>
<td>12 (2.86)</td>
<td></td>
</tr>
<tr>
<td>4 to 6 Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132 (31.50)</td>
<td>08 (1.91)</td>
<td></td>
</tr>
<tr>
<td>7 and above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141 (33.65)</td>
<td>04 (0.95)</td>
<td></td>
</tr>
</tbody>
</table>
having children live in joint family system as was observed in the present survey. Similarly the sanitary conditions of the patient at home are important to protect the family members from radioactive contamination and associated external radiation exposure.

In conclusion the results of the survey indicate that radiation protection advice and other requirements need to be formulated keeping in view patients socioeconomic status, life style and living conditions as these factors directly affect their capacity, ability and understanding the course of treatment.

Conflict of interest: Declared none

REFERENCES

10. Pankaj T (2005) Estimation of radiation doses to family...

