Radioactive analysis and radiological hazards of sand in Weifang, China

N. Yin, X. Lu*, Y. Li

School of Tourism and Environment, Shaanxi Normal University, Xi’an 710062, P.R. China

ABSTRACT

Background: The activity concentrations of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K in sand used as building material in Weifang of China were investigated for evaluating the radiation hazard. Materials and Methods: Sand samples were collected from Weifang and their radioactivity levels were measured using gamma-ray spectrometry. The radiation hazard for residents was assessed by radium equivalent activity (Ra\(_{eq}\)), indoor air absorbed dose rate (D), annual effective dose (AED) and excess lifetime cancer risk (ELCR). Results: The activity concentrations of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K ranged from 11.7 to 23.0, 33.6 to 126.1 and 353.2 to 924.8 Bq kg\(^{-1}\) with averages of 15.5, 70.3 and 802.9 Bq kg\(^{-1}\), respectively. All Ra\(_{eq}\) values were lower than the limit of 370 Bq kg\(^{-1}\). The mean value of D was higher than the world population-weighted average of 84 nGy h\(^{-1}\), while the mean AED and ELCR values were below the internationally accepted values. Conclusions: The use of sand in construction of dwellings is considered to be safe for inhabitants.

Keywords: Gamma-ray spectroscopy, natural radioactivity, radiation hazard, excess lifetime cancer risk, sand.

INTRODUCTION

Natural radionuclides \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K widely spread in rock, soil, sediment and building materials (1-3). Building materials are the main source of indoor gamma radiation besides terrestrial and cosmic radiations as individuals spend about 80% lifetime at home and/or office (2). \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K concentrations in building materials depend on their geochemical compositions (4-6). It is important to measure the activity concentrations of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K in building materials from different places for estimating the radiological hazards to residents.

Weifang, the world’s kite metropolis, is located at the east of Shandong province of China (figure 1), with a population of approximately 9,086,000. The aims of this work were to measure the activity concentrations of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K in sand used as building materials in Weifang using gamma-ray spectrometry and to assess the corresponding radiological hazards to individuals using radium equivalent activity, indoor air absorbed gamma dose rate, annual effective dose and excess lifetime cancer risk. The obtained results were compared with the recommended values and the similar studies carried out in other areas.

MATERIALS AND METHODS

Samples

Thirteen sand samples were collected randomly from local supplies and construction sites of Weifang, China. Each sample was ground to a finer power with a particle size < 0.16 mm and dried at 110°C for 24 h in an oven to ensure that moisture was completely removed (7-10). The dried samples were weighted and stored in gas-tight, radon impermeable and polyethylene containers to prevent the escape of \(^{222}\)Rn and \(^{220}\)Rn from the samples (8). The containers were...
Measurement of radioactivity

The activity concentrations of 226Ra, 232Th and 40K in the sand were determined using a 3 \times 3 inch NaI (TI) gamma-ray spectrometric system with >8% energy resolution (137Cs 661.6 keV) (7). The detector, maintained in a lead cylindrical shield of 10.5 cm thickness and 38 cm height, was coupled to a 1024 multichannel pulse height analyzer and the system was calibrated for the gamma-energy range from 50 keV to 3.2 MeV (7). The activity of 232Th was measured by 238.6 keV and 2614 keV gamma rays emitted from 212Pb and 208Tl, respectively. The activity 226Ra was measured by 609.3 and 1764.5 keV gamma rays emitted from 214Bi, whereas 40K activity was measured directly through its gamma ray energy peak of 1460.8 keV (7-9). The standard sources of 226Ra and 232Th were prepared using known activity contents and mixing with the matrix material of phthalic acid powder (8). The standard source of 40K used analytical grade potassium chloride (99.99% purity) of known activity, which accounts for approximately 84-93% of the total activity. Table 1 shows the comparison of the activity concentrations of 226Ra, 232Th and 40K in sand of Weifang with other reports (3,5-13). The natural radioactivity level in sands from different areas are not uniform, which would be due to the differences of their sources and chemical compositions.

Radium equivalent activity (Ra_{eq}) (3), indoor air absorbed dose rate (D) (14), annual effective dose (AED) (2) and excess lifetime cancer risk ($ELCR$) (15) were calculated to assess radiological hazards associated with the sand samples used as building materials. The duration of life in the calculation of $ELCR$ is Chinese datum (75 years) (http://en.worldstat.info/Asia/China). The Ra_{eq} values in the sand, ranging from 90.4 to 264.3 Bq kg$^{-1}$ with an average of 177.9 Bq kg$^{-1}$ (figure 2), were lower than the allowed limit of 370 Bq kg$^{-1}$ in building materials for safe use recommended by Organization for Economic Cooperation and Development (2). The values of D and AED for all studied sand samples in Weifang ranged from 79.14 to 223.17 nGy h$^{-1}$ with an average of 155.85 nGy h$^{-1}$ and from 0.39 to 1.09 mSv y$^{-1}$ with an average of 0.76 mSv y$^{-1}$, respectively (figure 3). The values of D and AED in the most sand samples (except one sample) were higher than the worldwide average value (84 nGy h$^{-1}$ and 0.41 mSv y$^{-1}$) and the average value of China (99 nGy h$^{-1}$ and 0.49 mSv y$^{-1}$) (2), while the values...
of AED in the most sand samples (except one sample) were lower than the recommended limit of 1 mSv y⁻¹ (14). The values of ELCR for the investigated samples ranged from 1.46×10^{-3} to 4.09×10^{-3} with an average of 2.87×10^{-3}. According to the above-mentioned recommended limit (1 mSv y⁻¹) of AED, the maximum ELCR should not exceed 3.75×10^{-3} for indoor exposure. The average ELCR for the investigated sand samples is less than this maximum.

Table 1. Comparison of activity concentrations and radium equivalent activity (Raₐₑq) in sands from different areas.

<table>
<thead>
<tr>
<th>Areas</th>
<th>Activity concentration (Bq kg⁻¹)</th>
<th>Raₐₑq (Bq kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>^{226}Ra</td>
<td>^{232}Th</td>
</tr>
<tr>
<td>Xining, China (7)</td>
<td>21.5</td>
<td>32.7</td>
</tr>
<tr>
<td>Urumqi, China (8)</td>
<td>22.4</td>
<td>25.1</td>
</tr>
<tr>
<td>Baotou, China (9)</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Punjab, Pakistan (10)</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td>Bangladesh (11)</td>
<td>14.1</td>
<td>25.0</td>
</tr>
<tr>
<td>Malaysia (12)</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>India (13)</td>
<td>43.7</td>
<td>64.4</td>
</tr>
<tr>
<td>Namakkal, India (13)</td>
<td>2.27</td>
<td>21.72</td>
</tr>
<tr>
<td>Najaf, Iraq (15)</td>
<td>43.57</td>
<td>1.98</td>
</tr>
<tr>
<td>Karbala, Iraq (15)</td>
<td>44.21</td>
<td>2.06</td>
</tr>
<tr>
<td>Pakistan (6)</td>
<td>30.5</td>
<td>53.2</td>
</tr>
<tr>
<td>Weifang, China (Present study)</td>
<td>15.5</td>
<td>70.3</td>
</tr>
</tbody>
</table>

Figure 2. The activity concentrations of ^{226}Ra, ^{232}Th and ^{40}K and radium equivalent activity (Raₐₑq) in the sand samples.

Figure 3. The absorbed dose rate indoor (D) and annual effective dose (AED) in the sand samples.
CONCLUSION

The mean concentrations of 232Th and 40K in sand from Weifang of China were higher than, while the mean concentration of 226Ra was lower than the average concentration of Chinese soil and the worldwide population-weighted average value in soil. From the analysis of radiological parameters, one can conclude that sand samples collected from Weifang, China can be safely used as building materials and do not pose significant radiation hazards to inhabitants.

ACKNOWLEDGEMENTS

This work was supported by the Fundamental Research Funds for the Central Universities through Grants GK201601009. Gratitude is expressed to S Zhuang and C Shi for their helps with the samples preparation and the experiments. The authors also thank Editor-in-Chief Prof. Hossein Mozdarani and anonymous reviewers for their insightful suggestion and critical reviews of the manuscript.

Conflict of interest: Declared none.

REFERENCES