Chemoradiotherapy alone or in combination with Endostar for patients with advanced non-small cell lung cancer: A systematic review and meta-analysis

Z.C. Tao^{1#}, J. Qiu^{2#}, Y.Y. Zhang^{1#}, L. Qian^{1*}, J. Gao^{1*}, Y. Zhou¹, L. Yang¹, J. He¹, J. Yang¹, R. Wang¹, Y. Huang¹, L. Zhou¹, B. Sun¹, Y.Y. Cui¹

¹Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China

²Department of Imaging, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China

ABSTRACT

▶ Review article

*Corresponding authors: Dr. Liting Qian, E-mail: money2004@sina.com

Dr. Jin Gao, **E-mail:** gj11667@126.com

Revised: March 2020 Accepted: April 2020

Int. J. Radiat. Res., January 2021; 19(1): 1-12

DOI: 10.29252/ijrr.19.1.1

*Co-first authors: Zhenchao Tao, Jun Qiu and Yangyang Zhang Previous studies show inconsistent effect estimates for the efficacy of Endostar in patients with advanced non-small cell lung cancer (NSCLC) undergoing chemoradiotherapy. Therefore, this meta-analysis aimed to determine the effectiveness and safety on the basis of data obtained from available randomized controlled trials (RTCs). We find relevant articles reporting the use of Endostar combined with chemoradiotherapy regimens in the treatment of advanced NSCLC. The retrieval period was from June 2008 to June 2018. A total of 11 RTCs that recruited a total of 735 patients were included. Overall, the results indicated that patients who received Endostar plus chemoradiotherapy showed a significantly increased incidence of objective response rate (ORR) (relative risk [RR] = 1.48; 95% confidence interval [CI] = 1.31-1.67; P < 0.00001) and disease control rate (DCR) (RR = 1.17; 95% CI = 1.09-1.25; P < 0.00001) compared with those who received chemoradiotherapy alone. However, no significant difference was noted between groups for 1-year survival rate (RR = 1.06; 95% CI = 0.91-1.23; P = 0.48). Furthermore, combined Endostar with chemoradiotherapy did not yield a high incidence of stable and elevated Karnofsky performance score (RR = 1.06; 95% CI = 0.91-1.23; P = 0.48). Moreover, no significant difference was noted in the incidence of total toxicity between the two groups. The findings of our study indicated that treatment with Endostar plus chemoradiotherapy yielded a high incidence of ORR or DCR, but did not trigger excess adverse events in patients with NSCLC.

Keywords: Endostar, Lung cancer, Chemoradiotherapy, Meta-analysis, Efficacy; Safety.

INTRODUCTION

Lung cancer is the most frequently occurring malignant tumor and is a threat to human health $^{(1, 2)}$. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers $^{(3, 4)}$. Since early diagnosis is still difficult, by the time a diagnosis is made, 70%–80% of the patients have missed the opportunity for radical resection $^{(5)}$. Despite the variety of treatments

present, the overall survival rate for advanced lung cancer is only 4–6 months, with a five-year survival rate of approximately 4.2% ⁽⁶⁾. Chemoradiotherapy is the primary method of treatment for advanced NSCLC ⁽⁷⁾, and was recommended in 2008 by the National Comprehensive Oncology Network of the United States as the standard regimen of unresectable NSCLC. However, this treatment is restricted by toxicity and side effects, and its therapeutic effect often plateaus (8).

An increased understanding of tumor molecular biology has led to biological targeting drugs that have enriched the treatment of lung cancer and have become an important weapon in the treatment of cancer.

In 1971, Folkman proposed the theory of antiangiogenesis. Tumor progression is divided into two stages, prevascular and vascular phases. During prevascularization, the diameter of the tumor is less than 3 mm, and no angiogenesis is noted. During this period, nutritional uptake and excretion of metabolites by tumor cells are accomplished by simple diffusion. During the vascular phase, neovascularization begins in the body of the tumor and establishes the microcirculation of the tumor itself. During this period, the tumor grows rapidly, and its malignant characteristics are revealed.

The transformation from prevascularization to vascular phase is known as the "angiogenesis switch" ⁽⁹⁾. Thus, the idea for treating tumor by antiangiogenesis targeting was proposed. of recombinant human vascular Injection endostatin (Endostar, YH-16) is a novel multitargeting antiangiogenic drug that was developed by a gene recombination technique. Its mechanism of action is inhibition of tumor neovascularization by selectively inhibiting the migration of vascular endothelial cells to block the nutrient supply to tumor cells, using antiproliferation and antimigration effects, and promoting apoptosis. Since its target action on vascular endothelial cells is less toxic to normal tissue cells, it is less likely to cause bone marrow suppression and gastrointestinal reaction. In addition, the genotype of tumor vascular endothelial cells is stable, and does not tent to lead to drug resistance. Therefore, Endostar has a broad spectrum, low toxicity, and no drug resistance.

The Chinese version of lung cancer diagnosis and treatment guidelines were recommended, combining with vinorelbine and cisplatin regimen for the treatment of stage III/IV NSCLC for initial or recurrent treatment ^(10, 11). Recent studies showed that Endostar combined with chemoradiotherapy can improve the efficacy and

quality of life (QoL) of patients with NSCLC. However, the sample size of each single study was small and the quality is different. Therefore, used а systematic evaluation we and meta-analysis to systematically and objectively evaluate the efficacy and safety of Endostar combined with chemoradiotherapy in the of NSCLC treatment to provide more evidence-based medical evidence for its future application in the treatment of advanced NSCLC.

MATERIALS AND METHODS

This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement issued in 2009 (Checklist S1).

Identification of literature

We searched and identified relevant randomized controlled trials (RCTs) from PubMed, Google, Embase, China National Knowledge Internet, Wanfang, and Chinese Biology Medicine databases. The retrieval period was from June 2008 to June 2018. We adopted various medical subject headings terms and key words related to NSCLC and Endostar, including: "non-small cell lung cancer," "NSCLC," "lung cancer," "recombinant human endostatin," "rh-endostatin," "endostatin," "endostar," and "chemoradiotherapy." In addition, if we found information that was useful intimately associated with Endostar in the reference lists of the retrieved studies, these were also identified.

Inclusion and exclusion criteria

Inclusion criteria were: (1) RCTs, (2) patients diagnosed with NSCLC, (3) studies designed to compare Endostar plus chemoradiotherapy with chemoradiotherapy, and (4) reported outcome measures.

Exclusion criteria were: (1) animal studies (not human), (2) treatment of non-pulmonary lesions, but other metastatic lesions, (3) patients with other tumors, (4) lack of an effective control group, and (5) published literature selected for final publication.

2

DOI: 10.29252/ijrr.19.1.1

Collection of study variables

The data that we extracted included: (1) number of patients in each RCT, (2) publication date of literature, (3) clinical characteristics, (4) clinical intervention methods, (5) objective response rate (ORR), disease control rate (DCR), and one-year survival rate, and (6) QoL and adverse effects (AEs).

Outcome definition

Outcomes were defined for RCTs using Endostar combined with chemoradiotherapy versus chemoradiotherapy in the treatment of advanced NSCLC.

Quality assessment of included randomized controlled trials

Quality evaluation was conducted according to the Cochrane Handbook (version 5.0.1) as follows: (1) methods used to randomize groups of patients, (2) how to perform adequate setting blinding, (3) how to perform an adequate allocation and conceal the sequence, (4) withdrawal and its handling, with or without a description of the number and reasons for withdrawal: low risk of bias, unclear risk of bias, and high risk of bias ^(12, 13).

Statistical analysis

The meta-analysis used RevMan 5.3 and STATA15 Software. The relative risk (RR) was used to measure the treatment in the study. The effect quantity was expressed as 95% confidence interval (CI). Heterogeneity among the results of the study was tested using chi-square test. The fixed effect model combination analysis was applied if the similarity among the studies in the subgroup was sufficient ($I^2 < 50$, P > 0.1). Conversely, using the random-effects model, the sensitivity of ORR and DCR was analyzed by removing single study methods, and subgroup analysis was carried out according to average age, pathological type, and quality evaluation grade.

Visual inspections of funnel plots were conducted. Egger and Begg tests were also used to statistically assess the publication bias for investigated outcomes. All reported *P*-values were two-sided, and *P* < 0.05 was considered *Int. J. Radiat. Res., Vol. 19 No. 1, January 2021*

statistically significant for all included studies.

RESULTS

Selection of studies

After preliminary screening, 65 articles were retrieved: 31 articles were summary or nursing reports, or did not used radiotherapy, two were infratests, and one study was combined with other tumors. Furthermore, eight studies were descriptive and lacked controls, three were not randomized, five were without synchronous chemotherapy, three did not treating pulmonary lesions, and one was a repeat article, leaving a final total of 11 articles included in the analysis ⁽¹⁴⁻²⁴⁾ (figure 1). Manual searches of the references of the retrieved studies did not yield any further studies that met the inclusion criteria.

Figure 1. Flow chart of the literature search

Baseline characteristics

RCTs of Endostar combined with chemoradiotherapy versus chemoradiotherapy alone to treat NSCLC were selected in this study. The baseline characteristics of the studies and patients are summarized in table 1. Overall, 11 RCTs with a total of 735 NSCLC patients were included in the final analysis, which included 458 males and 277 females. The patients aged from 21 to 87 years. A total of 368 patients combined received Endostar with

chemoradiotherapy, and 367 patients received chemoradiotherapy alone. All the included studies were conducted in China. Pathological types included adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, and large cell carcinoma. Four studies included patients with stage III NSCLC, and the remaining seven studies included both stages III and IV NSCLC patients. The study quality of included studies is summarized in table 2. Overall, one study scored 4, one had a score of 3, and the remaining nine studies had scores of 2.

Study	Time	Sample (T/C)	Sex (M/F)	Age (T/C)	histopathology (N)	Stage (N)	End point		
Liu J 2009 ^{(14]}	2007-2008	31/31	54/17	29-68	A (24), S (38)	III (37), IV (25)	1,2,5		
Ma JB 2009 ^{(15]}	2007.1-2008.9	23/23	35/11	38-70/44-73	A (15), S (31)	III	1,2,3,4,5		
Ding Y 2011 (16)	2007.4-2010.3	14/14	23/5	45-63/46-66	A (20), S (6), L (2)	III	1,3,5		
Jiang ZG 2011 ^{(17]}	2009.2-2010.12	19/20	23/16	70-75/68-76	A (21), S (18)	III (24) <i>,</i> IV (15)	1,2,4,5		
Yang Y 2012 (18)	2009.6-2012.6	20/20	24/16	45-87	A, S, AS	III and IV	1,2,4,5		
Chen XJ 2013 ^{(19]}	2009.4-2010.4	21/21	27/15	40-70/41-69	A (19), S (23)	III	1,2,3,5		
Liu HW 2013 ^{(20]}	2009.9-2011.8	78/80	82/76	45-71/43-72	A (72)/S (86)		1,2,5		
Zhang Y 2016 ⁽²¹⁾	2006.6-2009.9	36/36	37/35	21-60/17-65	NSCLC	III (39) <i>,</i> IV (33)	1,2,5		
Zang Y 2017 ⁽²²⁾		57/53	75/35	52.9±13.2/53.	A (34), S (57), AS	III (38), IV (72)	1,2,4,5		
		- ,	- ,	7±13.6	(19)	(<i>n</i>) (<i>n</i>)	, , , -		
Liu L 2017 ^{(23]}	2013.12-2015.1	30/30	46/14	<55:9, ≥55:21/	A (38), S (22)	III (24), IV (36)	1,2,3		
	2013.12-2013.1	50/50	40/14	<55:10, ≥55:20	~ (30), 3 (22)	···· (2+), IV (30)	1,2,3		
Xu H 2018 ^{(24]}	2013.1-2015.6	39/39	41/37	52-76/51-77	А	III (41) <i>,</i> IV (37)	1,2,3,4,5		

Table 1. Basic information included in the clinical studies

Table 2. Quality analysis of included studies.

Included study	Randomized method	Allocation hidden	Blind	Withdrawal research	Score of study
Liu J ⁽¹⁴⁾	Unclear	No use	No use	Sufficient	2
Ma JB ⁽¹⁵⁾	Unclear	No use	No use	Sufficient	2
Ding Y ⁽¹⁶⁾	Unclear	No use	Sufficient	Sufficient	4
Jiang ZG ⁽¹⁷⁾	Unclear	No use	No use	Sufficient	2
Yang Y ⁽¹⁸⁾	Unclear	No use	No use	Sufficient	2
Chen XJ ⁽¹⁹⁾	Unclear	No use	No use	Sufficient	2
Liu HW ⁽²⁰⁾	Unclear	No use	No use	Sufficient	2
Zhang Y ⁽²¹⁾	Unclear	No use	No use	Sufficient	2
Zang Y ⁽²²⁾	Unclear	No use	No use	Sufficient	2
Liu L ⁽²³⁾	Unclear	No use	No use	Sufficient	2
Xu H ⁽²⁴⁾	Sufficient	No use	No use	Sufficient	3

ORR

4

There were 11 RCTs included in this study (14-24). A fixed effect model meta-analysis was chosen because $I^2 = 14\%$. The results showed that the ORR of the Endostar combined with chemoradiotherapy group was significantly higher than that of the chemoradiotherapy alone group (RR = 1.48, 95% CI = 1.31, 1.67, P < 0.00001; figure 2). Subgroup analysis showed P < 0.05 (Figure 3). Analysis of sensitivity by excluding the single item method did not have a significant effect on the overall result. The Egger

There were 10 RCTs included in the present

DCR

study (14, 15, 17-19, 21-24). A fixed effect model meta-analysis was chosen because $I^2 = 0\%$. The results showed that the DCR for the Endostar combined with chemoradiotherapy group was higher that significantly than of the chemoradiotherapy alone group (RR = 1.17, 95%)

and Begg calculation showed that there was no

publication bias (Egger P-value = 0.676, Begg

P-value = 0.876; figure 4).

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

CI = 1.09-1.25, P < 0.00001; figure 5). Subgroup analysis showed P < 0.05 (figure 6). Analysis of sensitivity by excluding the single item method did not have a significant effect on the overall result. The Egger and Begg calculation of showed that there was no publication bias (Egger *P*-value = 0.845, Begg *P*-value = 0.754; figure 7).

Figure 2. Forest plot for the incidence of ORR between Endostar combined with chemoradiotherapy versus chemoradiotherapy

	Experim	ental	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Ma JB 2009	21	23	20	23	7.5%	1.05 [0.86, 1.29]	2009	+
Liu J 2009	23	31	20	31	7.5%	1.15 [0.82, 1.61]	2009	+-
Jiang ZG 2011	18	19	14	20	5.1%	1.35 [1.00, 1.84]	2011	
Yang Y 2012	16	20	13	20	4.9%	1.23 [0.83, 1.82]	2012	+
Chen XJ 2013	19	21	17	21	6.4%	1.12 [0.87, 1.43]	2013	+
Liu HW 2013	74	78	70	80	25.9%	1.08 [0.98, 1.20]	2013	•
Zhang Y 2016	36	36	30	36	11.4%	1.20 [1.03, 1.40]	2016	+
Liu L 2017	26	30	25	30	9.4%	1.04 [0.84, 1.29]	2017	+
Zang Y 2017	49	57	38	53	14.8%	1.20 [0.98, 1.46]	2017	-
Xu H 2018	30	39	19	39	7.1%	1.58 [1.10, 2.27]	2018	
Total (95% Cl)		354		353	100.0%	1.17 [1.09, 1.25]		•
Total events	312		266					
Heterogeneity: Chi ² =	8.45, df = 1	9 (P = 0	.49); I ² = ()%				
Test for overall effect:	Z = 4.46 (P < 0.00	001)					0.01 0.1 1 10 100 Favours (experimental) Favours (control)

Figure 5. Forest plot for the incidence of DCR between Endostar combined with chemoradiotherapy versus chemoradiotherapy alone.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

[DOI: 10.29252/ijrr.19.1.1

	Experime		Contro			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
1.14.1 mean age<60								
da JB 2009	18	23	15	23	2.8%	1.92 [0.52, 7.12]	2009	
iu J 2009	11	31	5	31	2.8%	2.86 [0.86, 9.56]		
)ing Y 2011	10	14	9	14	2.2%	1.39 [0.28, 6.84]		
iu HW 2013	68	78	54	80	5.9%	3.27 [1.45, 7.38]	2013	
hang Y 2016	32	36	22	36	2.1%	5.09 [1.48, 17.53]	2016	
ang Y 2017	30	57	12	53	5.1%	3.80 [1.66, 8.68]	2017	
Subtotal (95% CI)		239		237	21.0%	3.15 [2.04, 4.84]	2011	•
	400	233		251	21.0%	3.13 [2.04, 4.04]		•
Fotal events	169		117					
Heterogeneity: Chi ² =	2.37, df = 5	(P = 0.	80); I² = 0	1%				
est for overall effect:	Z = 5.21 (P	< 0.000	001)					
.14.2 mean age >=€	0							
-		10	10	20	1.000	6 33 /4 47 34 341	2044	
liang ZG 2011	16	19	10	20	1.3%	5.33 [1.17, 24.21]		
rang Y 2012	7	20	2	20	1.1%	4.85 [0.86, 27.22]	2012	
Chen XJ 2013	15	21	11	21	2.7%	2.27 [0.63, 8.15]	2013	
(u H 2018	28	39	16	39	3.9%	3.66 [1.42, 9.42]	2018	—
Subtotal (95% CI)		99		100	9.1%	3.64 [1.94, 6.81]		
		00	20		0.1.10	0.01[1.01, 0.01]		•
Fotal events	66		39					
Heterogeneity: Chi ² =	0.87, df = 3	(P = 0.)	83); I* = 0	%				
Fest for overall effect:	Z = 4.03 (P	< 0.000	01)					
			-					
1.14.3 only adenocar	cinoma							
-	28	20	46	20	2.00	2 66 11 42 0 421	2010	I
(u H 2018	28	39	16	39	3.9%	3.66 [1.42, 9.42]	2018	
Subtotal (95% CI)		39		39	3.9%	3.66 [1.42, 9.42]		
Fotal events	28		16					
Heterogeneity: Not ap	plicable							
Fest for overall effect:		= 0.003	7)					
restion overall ellect.	2 - 2.00 (i	- 0.001	·/					
1.14.4 not only adeno	carcinoma							
_iu J 2009	11	31	5	31	2.8%	2.86 [0.86, 9.56]	2009	
4a JB 2009	18	23	15	23	2.8%	1.92 [0.52, 7.12]	2009	
Ding Y 2011	10	14	9	14	2.2%	1.39 [0.28, 6.84]		
	16							
Jiang ZG 2011		19	10	20	1.3%	5.33 [1.17, 24.21]		
rang Y 2012	7	20	2	20	1.1%	4.85 [0.86, 27.22]	2012	
_iu HW 2013	68	78	54	80	5.9%	3.27 [1.45, 7.38]	2013	
Chen XJ 2013	15	21	11	21	2.7%	2.27 [0.63, 8.15]	2013	
Zhang Y 2016	32	36	22	36	2.1%	5.09 [1.48, 17.53]		
-								
Liu L 2017	20	30	17	30	4.9%	1.53 [0.54, 4.36]		
Zang Y 2017	30	57	12	53	5.1%	3.80 [1.66, 8.68]	2017	
Subtotal (95% CI)		329		328	31.1%	2.97 [2.08, 4.25]		
Fotal events	227		157					
Heterogeneity: Chi ² =		P = 0		96				
Fest for overall effect:	Z = 0.90 (P	< U.UUI	001)					
1.14.5 score of study	<3							
Ma JB 2009	18	23	15	23	2.8%	1.92 [0.52, 7.12]	2009	
_iu J 2009	11	31	5	31	2.8%	2.86 [0.86, 9.56]		+
	16	19	10	20	1.3%			I
liang ZG 2011						5.33 [1.17, 24.21]		
rang Y 2012	7	20	2	20	1.1%	4.85 [0.86, 27.22]		
-	68	78	54	80	5.9%	3.27 [1.45, 7.38]		
_iu HW 2013		21	11	21	2.7%	2.27 [0.63, 8.15]	2013	-
-	15							
Liu HW 2013 Chen XJ 2013				36	2.1%	5.09 [1.48, 17, 53]	2010	
Liu HW 2013 Chen XJ 2013 Zhang Y 2016	32	36	22	36 30	2.1% 4.9%	5.09 [1.48, 17.53]		
Liu HW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017	32 20	36 30	22 17	30	4.9%	1.53 [0.54, 4.36]	2017	
Liu HW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017	32	36 30 57	22	30 53	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	
Liu HW 2013 Chen XJ 2013 Zhang Y 2016	32 20	36 30	22 17	30	4.9%	1.53 [0.54, 4.36]	2017	 ↓
Liu HW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI)	32 20	36 30 57	22 17	30 53	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	•
Liu HW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events	32 20 30 217	36 30 57 315	22 17 12 148	30 53 314	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	•
Liu HW 2013 Chen XJ 2013 Zhang Y 2013 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² =	32 20 30 217 4.12, df = 8	36 30 57 315 (P = 0.1	22 17 12 148 85); I ^z = 0	30 53 314	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	•
Liu HW 2013 Chen XJ 2013 Zhang Y 2013 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² =	32 20 30 217 4.12, df = 8	36 30 57 315 (P = 0.1	22 17 12 148 85); I ^z = 0	30 53 314	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	•
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Fest for overall effect:	32 20 30 217 4.12, df = 8 Z = 6.00 (P	36 30 57 315 (P = 0.1	22 17 12 148 85); I ^z = 0	30 53 314	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017	•
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: I.14.6 score of study	32 20 30 217 4.12, df = 8 Z = 6.00 (P	36 30 57 315 (P = 0. < 0.000	22 17 12 148 85); I ² = 0 001)	30 53 314	4.9% 5.1% 28.8%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47]	2017 2017	•
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Fest for overall effect:	32 20 30 217 4.12, df = 8 Z = 6.00 (P	36 30 57 315 (P = 0.1	22 17 12 148 85); I ^z = 0	30 53 314	4.9% 5.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68]	2017 2017	•
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ^a = Fest for overall effect: 1.14.6 score of study Ding Y 2011	32 20 30 217 4.12, df = 8 Z = 6.00 (P 2>=3 10	36 30 57 315 (P = 0. < 0.000	22 17 12 148 85); I [#] = 0 001) 9	30 53 314 %	4.9% 5.1% 28.8% 2.2%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84]	2017 2017 2011	• •
Liu FW 2013 Chen XJ 2013 Chang Y 2013 Liu L 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018	32 20 30 217 4.12, df = 8 Z = 6.00 (P	36 30 57 315 (P = 0. < 0.000 14 39	22 17 12 148 85); I ² = 0 001)	30 53 314 % 14 39	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	•
Liu FW 2013 Chen XJ 2013 Chang Y 2013 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 (u H 2018 Subtotal (95% CI)	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28	36 30 57 315 (P = 0. < 0.000	22 17 12 148 85); I [#] = 0 001) 9 16	30 53 314 %	4.9% 5.1% 28.8% 2.2%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84]	2017 2017 2011	• •
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% Cl) Fotal events	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38	36 30 57 315 (P = 0.' < 0.00(14 39 53	22 17 12 148 85); I ^a = 0 001) 9 16 25	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	
Liu FW 2013 Chen XJ 2013 Chang Y 2013 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 (u H 2018 Subtotal (95% CI)	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38	36 30 57 315 (P = 0.' < 0.00(14 39 53	22 17 12 148 85); I ^a = 0 001) 9 16 25	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% Cl) Fotal events	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1	36 30 57 315 (P = 0. < 0.000 14 39 53 (P = 0.	22 17 12 148 85); I ² = 0 001) 9 16 25 31); I ² = 5	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	•
Liu FW 2013 Chen XJ 2013 Zhang Y 2016 Liu L 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% Cl) Total events Heterogeneity: Chi ² =	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1	36 30 57 315 (P = 0. < 0.000 14 39 53 (P = 0.	22 17 12 148 85); I ² = 0 001) 9 16 25 31); I ² = 5	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	
Liu FWV 2013 Chen XJ 2013 Chang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ^a = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% CI) Fotal events Heterogeneity: Chi ^a = Fest for overall effect:	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1	36 30 57 315 (P = 0. < 0.000 14 39 53 (P = 0. = 0.01)	22 17 12 148 85); I ² = 0 001) 9 16 25 31); I ² = 5	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9% 6.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42] 2.84 [1.27, 6.34]	2017 2017 2011	
Liu FW 2013 Chen XJ 2013 Chang Y 2016 Liu L 2017 Zang Y 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = Fest for overall effect: Fotal (95% CI)	32 20 30 217 4.12, df = 8 Z = 6.00 (P >>=3 10 28 38 1.05, df = 1 Z = 2.54 (P	36 30 57 315 (P = 0. < 0.000 14 39 53 (P = 0.	22 17 12 148 85); * = 0 001) 9 16 25 31); * = 5	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42]	2017 2017 2011	•
Liu FWV 2013 Chen XJ 2013 Chang Y 2016 Liu L 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ^a = Fest for overall effect: 1.14.6 score of study Ding Y 2011 Ku H 2018 Subtotal (95% CI) Fotal events Heterogeneity: Chi ^a = Fest for overall effect:	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1	36 30 57 315 (P = 0. < 0.000 14 39 53 (P = 0. = 0.01)	22 17 12 148 85); I ² = 0 001) 9 16 25 31); I ² = 5	30 53 314 % 14 39 53	4.9% 5.1% 28.8% 2.2% 3.9% 6.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42] 2.84 [1.27, 6.34]	2017 2017 2011	
iu FW 2013 Chen XJ 2013 Chang Y 2016 iu L 2017 Cang Y 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = "est for overall effect: 14.6 score of study Ding Y 2011 Cu H 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = "est for overall effect: Total (95% CI)	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1 Z = 2.54 (P 745	36 30 57 315 (P = 0. < 0.00(14 39 53 (P = 0. = 0.01) 1074	22 17 12 148 85); ² = 0 001) 9 16 25 31); ² = 5 502	30 53 314 % 14 39 53 % 1071	4.9% 5.1% 28.8% 2.2% 3.9% 6.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42] 2.84 [1.27, 6.34]	2017 2017 2011	
Liu FW 2013 Chang Y 2013 Chang Y 2017 Liu L 2017 Liu L 2017 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: L14.6 score of study Ding Y 2011 Liu H 2018 Liubtotal (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: Total (95% Cl) Total events	32 20 30 217 4.12, df = 8 Z = 6.00 (P >=3 10 28 38 1.05, df = 1 Z = 2.54 (P 745 13.90, df = 1	36 30 57 315 (P = 0. < 0.00(14 39 53 (P = 0. = 0.01) 1074 31 (P =	22 17 12 148 85); ² = 0 001) 9 16 25 31); ² = 5 502 1.00); ² =	30 53 314 % 14 39 53 % 1071	4.9% 5.1% 28.8% 2.2% 3.9% 6.1%	1.53 [0.54, 4.36] 3.80 [1.66, 8.68] 3.09 [2.14, 4.47] 1.39 [0.28, 6.84] 3.66 [1.42, 9.42] 2.84 [1.27, 6.34]	2017 2017 2011	0.01 0.1 1 10 10 Favours [experimental] Favours [control]

Figure 3. Subgroup analysis for ORR.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

6

Study or Subgroup	Experime		Contr			Odds Ratio		Odds Ratio
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
l.15.1 mean age <60								
4a JB 2009	21	23	20	23	2.1%	1.57 [0.24, 10.44]	2009	
iu J 2009	23	31	20	31	6.2%	1.58 [0.53, 4.70]		
iu HW 2013	74	78	70	80	4.2%	2.64 [0.79, 8.82]		
	36	36	30	36				
(hang Y 2016						15.56 [0.84, 287.40]		
lang Y 2017	49	57	38	53	6.6%	2.42 [0.93, 6.30]	2017	
Subtotal (95% CI)		225		223	19.6%	2.44 [1.39, 4.28]		-
Fotal events	203		178					
Heterogeneity: Chi≊ = 2. Fest for overall effect: Z)%				
l.15.2 mean age>=60	•							
liang ZG 2011	18	19	14	20	0.9%	7.71 [0.83, 71.69]	2011	
-								
'ang Y 2012	16	20	13	20	3.1%	2.15 [0.52, 9.00]		
hen XJ 2013	19	21	17	21	1.9%	2.24 [0.36, 13.78]		
(u H 2018	30	39	19	39	5.2%	3.51 [1.32, 9.30]	2018	
Subtotal (95% CI)		99		100	11.1%	3.23 [1.62, 6.45]		
Total events	83		63					
Heterogeneity: Chi ² = 1.		P = 0.2		1%				
est for overall effect: Z								
l.15.3 only adenocarci	noma							
(u H 2018	30	39	19	39	5.2%	3.51 [1.32, 9.30]	2018	
Subtotal (95% CI)		39		39	5.2%	3.51 [1.32, 9.30]		
Total events	30		19					
leterogeneity: Not appl			10					
- , ,,		- 0.042						
Fest for overall effect: Z	= 2.53 (P	= 0.01)						
1 .15.4 not only adenoc a Na JB 2009	arcinoma 21	1 23	20	23	2.1%	1.57 [0.24, 10.44]	2000	
						• • •		
iu J 2009	23	31	20	31	6.2%	1.58 [0.53, 4.70]		
liang ZG 2011	18	19	14	20	0.9%	7.71 (0.83, 71.69)	2011	
′ang Y 2012	16	20	13	20	3.1%	2.15 [0.52, 9.00]	2012	
Chen XJ 2013	19	21	17	21	1.9%	2.24 [0.36, 13.78]	2013	
iu HW 2013	74	78	70	80	4.2%	2.64 [0.79, 8.82]		
Chang Y 2016	36	36	30	36		15.56 [0.84, 287.40]		
-								
.iu L 2017	26	30	25	30	4.0%	1.30 [0.31, 5.40]		
			38	53	6.6%	2.42 [0.93, 6.30]	2017	
Zang Y 2017	49	57				a [o		
Zang Y 2017 Subtotal (95% CI)	49	315	00	314	29.4%	2.40 [1.52, 3.79]		
Subtotal (95% CI)	49 282		247					
Subtotal (95% CI) Fotal events	282	315	247	314				-
Subtotal (95% CI)	282 .15, df = 8	315 (P = 0.0	247 34); I² = (314				•
SubTotal (95% CI) Fotal events Heterogeneity: Chi ² = 4. Fest for overall effect: Z I.15.5 score of study<3	282 .15, df = 8 = 3.74 (P 3	315 (P = 0.1 = 0.000	247 34); I² = (314		2.40 (1.52, 3.79)		
Subtotal (95% Cl) Fotal events Heterogeneity: Chi² = 4. Fest for overall effect: Z	282 .15, df = 8 = 3.74 (P	315 (P = 0.0	247 34); I² = (314				
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z I. 15.5 score of study Aa JB 2009	282 .15, df = 8 = 3.74 (P 3	315 (P = 0.1 = 0.000	247 34); I² = (12)	314)%	29.4%	2.40 (1.52, 3.79)	2009	
SubTotal (95% CI) Fotal events Heterogeneity: Chi ² = 4. Fest for overall effect: Z I.15.5 score of study<: Ma JB 2009 Liu J 2009	282 .15, df = 8 = 3.74 (P 3 21 23	315 (P = 0.1 = 0.000 23 31	247 34); I² = (12) 20 20	314)% 23 31	29.4% 2.1% 6.2%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70)	2009 2009	
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z I. 15.5 score of study< A JB 2009 Ju J 2009 Jiang ZG 2011	282 .15, df = 8 = 3.74 (P 3 21 23 18	315 (P = 0.0 = 0.000 23 31 19	247 34); I² = 0 12) 20 20 14	314)% 23 31 20	29.4% 2.1% 6.2% 0.9%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69)	2009 2009 2011	
aubtotal (95% CI) otal events leterogeneity: Chi ² = 4. est for overall effect: Z .15.5 score of study<: la JB 2009 iu J 2009 iang ZG 2011 'ang Y 2012	282 .15, df = 8 = 3.74 (P 3 21 23 18 16	315 (P = 0.4 = 0.000 23 31 19 20	247 34); I² = 0 12) 20 20 14 13	314)% 23 31 20 20	29.4% 2.1% 6.2% 0.9% 3.1%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69) 2.15 (0.52, 9.00)	2009 2009 2011 2012	
iubiotal (95% CI) iotal events leterogeneity: Chi ² = 4, est for overall effect: Z its JB 2009 iu J 2009 iang ZG 2011 iang Y 2012 iu HW 2013	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74	315 = (P = 0.1 = 0.000 23 31 19 20 78	247 34); I ² = (12) 20 20 14 13 70	314 0% 23 31 20 20 80	29.4% 2.1% 6.2% 0.9% 3.1% 4.2%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69) 2.15 (0.52, 9.00) 2.64 (0.79, 8.82)	2009 2009 2011 2012 2013	
initiate (95% CI) iotal events leterogeneity: Chi ² = 4, est for overall effect: Z .15.5 score of study< Ia JB 2009 ia J 2009 iang ZG 2011 iang ZG 2011 iang Y 2012 iu HW 2013 Chen XJ 2013	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19	315 (P = 0.0 23 31 19 20 78 21	247 34); I [*] = ()2) 20 20 14 13 70 17	314 0% 23 31 20 20 80 21	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69) 2.15 (0.52, 9.00) 2.64 (0.79, 8.82) 2.24 (0.36, 13.78)	2009 2009 2011 2012 2013 2013	
ubiotal (95% CI) otal events leterogeneity: Chi ² = 4. est for overall effect: Z .15.5 score of study<: la JB 2009 iu J 2009 iang Y 2012 iu HW 2013 hen XJ 2013 hang Y 2016	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36	315 = (P = 0.1 = 0.000 23 31 19 20 78	247 34); I ² = (12) 20 20 14 13 70	314 0% 23 31 20 20 80	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69) 2.15 (0.52, 9.00) 2.64 (0.79, 8.82)	2009 2009 2011 2012 2013 2013	
iubiotal (95% CI) iotal events leterogeneity: Chi ² = 4. iest for overall effect: Z is JB 2009 iu J 2009 iang ZG 2011 iang Y 2012 iu HW 2013 ihen XJ 2013 ihang Y 2016	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19	315 (P = 0.0 23 31 19 20 78 21	247 34); I [*] = ()2) 20 20 14 13 70 17	314 0% 23 31 20 20 80 21	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9%	2.40 (1.52, 3.79) 1.57 (0.24, 10.44) 1.58 (0.53, 4.70) 7.71 (0.83, 71.69) 2.15 (0.52, 9.00) 2.64 (0.79, 8.82) 2.24 (0.36, 13.78)	2009 2009 2011 2012 2013 2013 2013 2016	
ubiotal (95% CI) otal events leterogeneity: Chi ² = 4. est for overall effect: Z .15.5 score of study<: la JB 2009 iu J 2009 iang ZG 2011 iang Y 2012 iu HW 2013 hen XJ 2013 hang Y 2016 iang Y 2016 iang Y 2017	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36	315 (P = 0.0 23 31 19 20 78 21 36	247 34); I ² = ()2) 20 14 13 70 17 30	314 23 31 20 20 80 21 36	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30]	2009 2009 2011 2012 2013 2013 2016 2017	
Subotal (95% CI) Total events Heterogeneity: Chi [≥] = 4. Test for overall effect: Z A JB 2009 Liu J 2009 Liang ZG 2011 (ang Y 2012 Liu HW 2013 Chen XJ 2013 Chang Y 2016 Liang Y 2017 Liu L 2017	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30	247 34); P = 0 20 20 14 13 70 17 30 38	314 0% 23 31 20 20 80 21 36 53 30	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 0.5% 6.6% 4.0%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40]	2009 2009 2011 2012 2013 2013 2016 2017	
Subotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z A JB 2009 Ju J 2009 Ju J 2009 Jiang ZG 2011 Yang Y 2012 Ju HW 2013 Chen XJ 2013 Chang Y 2016 Jang Y 2016 Jang Y 2017 Ju L 2017 Subtotal (95% CI)	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57	247 34); P = 0 20 14 13 70 17 30 38 25	314 23 31 20 20 80 21 36 53	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30]	2009 2009 2011 2012 2013 2013 2016 2017	
Subotal (95% CI) Fotal events Heterogeneity: Chi ² = 4. Fest for overall effect: Z I.15.5 score of study< Ma JB 2009 Liu J 2009 Liu J 2009 Liu J 2009 Liu J 2012 Liu HW 2013 Chang Y 2012 Chang Y 2013 Chang Y 2016 Zang Y 2017 Liu L 2017 Subtotal (95% CI) Fotal events	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315	247 34); I ^P = (20 20 14 13 70 17 30 38 25 247	314 23 31 20 20 80 21 36 53 30 314	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 0.5% 6.6% 4.0%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40]	2009 2009 2011 2012 2013 2013 2016 2017	
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z I.15.5 score of study< A JB 2009 Liu J 2009 Liu J 2009 Liang Y 2012 Liu HW 2013 Chang Y 2016 Lang Y 2017 Liu L 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4.	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1	247 34); I ² = (12) 20 20 14 13 70 17 30 38 25 247 84); I ² = (314 23 31 20 20 80 21 36 53 30 314	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 0.5% 6.6% 4.0%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40]	2009 2009 2011 2012 2013 2013 2016 2017	
iubotal (95% CI) iotal events leterogeneity: Chi ² = 4. iest for overall effect: Z .15.5 score of study<: (a JB 2009 iau J 2009 iau J 2009 iau J 2009 iau J 2012 iau HW 2013 Shen XJ 2013 Chang Y 2016 iau L 2017 iau L 2017 iau L 2017 iotal events leterogeneity: Chi ² = 4. iest for overall effect: Z	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1	247 34); I ² = (12) 20 20 14 13 70 17 30 38 25 247 84); I ² = (314 23 31 20 20 80 21 36 53 30 314	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 0.5% 6.6% 4.0%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40]	2009 2009 2011 2012 2013 2013 2016 2017	
iubotal (95% CI) iotal events leterogeneity: Chi [≥] = 4. iest for overall effect: Z .15.5 score of study<: la JB 2009 iau J 2009 iau J 2009 iau J 2012 iau HW 2013 Chen XJ 2013 Chen XJ 2013 Chen XJ 2013 Chen Y 2016 Cang Y 2017 Subtotal (95% CI) iotal events leterogeneity: Chi [≥] = 4. iest for overall effect: Z .15.6 score of study>:	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1	247 34); I ² = (12) 20 20 14 13 70 17 30 38 25 247 84); I ² = (314 23 31 20 20 80 21 36 53 30 314	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 0.5% 6.6% 4.0%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
iubiotal (95% CI) iotal events leterogeneity: Chi [≥] = 4. iest for overall effect: Z la JB 2009 iau J 2009 iang ZG 2011 iang Y 2012 iau HW 2013 Chen XJ 2013 Chen XJ 2013 Chang Y 2016 Cang Y 2017 iu L 2017 iut L 2017 iut L 2017 iotal events leterogeneity: Chi [≥] = 4. iest for overall effect: Z .15.6 score of study>- iau H 2018	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1 = 0.000 39	247 34); ² = (12) 20 20 14 13 70 14 13 70 38 25 247 34); ² = (12)	314)% 23 31 200 20 20 20 20 20 20 20 20 31 36 53 30 314)% 39	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subotal (95% CI) Total events Heterogeneity: Chi [≥] = 4. Test for overall effect: Z A JB 2009 Ju J 2009 Ju J 2009 Ju J 2009 Ju J 2012 Ju HW 2013 Chang Y 2012 Ju HW 2013 Chang Y 2016 Ju L 2017 Subtotal (95% CI) Total events Heterogeneity: Chi [≥] = 4. Test for overall effect: Z J.15.6 score of study> Ku H 2018 Subtotal (95% CI)	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3 30	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1 = 0.000	247 34); ² = (20 20 14 13 70 17 30 38 25 247 34); ² = (12) 19	314 23 31 20 20 80 21 36 53 30 314	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z I.15.5 score of study< Ma JB 2009 Liu J 2009 Liu J 2009 Liu J 2009 Liu J 2019 Liu J 2013 Chang Y 2013 Chang Y 2016 Lang Y 2017 Liu L 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 4. Test for overall effect: Z L15.6 score of study>: Ma H 2018 Subtotal (95% CI) Total events	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3 30 30	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1 = 0.000 39	247 34); ² = (12) 20 20 14 13 70 14 13 70 38 25 247 34); ² = (12)	314)% 23 31 200 20 20 20 20 20 20 20 20 31 36 53 30 314)% 39	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 4$. Test for overall effect: Z I.15.5 score of study<: Ma JB 2009 Jang ZG 2011 Yang Y 2012 Yang Y 2013 Chang Y 2013 Chang Y 2016 Jang Y 2017 Jul L 2017 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 4$. Test for overall effect: Z I.15.6 score of study> Ku H 2018 Subtotal (95% CI) Total events Heterogeneity: Not appl Heterogeneity: Not appl	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3 30 30 licable	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1 = 0.000 39 39	247 34); ² = 0 20 20 14 13 70 17 30 38 25 247 34); ² = 0 19 19	314)% 23 31 200 20 20 20 20 20 20 20 20 31 36 53 30 314)% 39	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subotal (95% CI) Total events leterogeneity: $Chi^2 = 4$. Test for overall effect: Z 15.5 score of study (a JB 2009 iu J 2009 iu J 2009 iu J 2012 iu HW 2013 Chang Y 2012 iu HW 2013 Chang Y 2016 Cang Y 2017 Jubtotal (95% CI) Total events leterogeneity: $Chi^2 = 4$. (a for overall effect: Z 15.6 score of study (a H 2018 Subtotal (95% CI) Total events leterogeneity: Not application (a st for overall effect: Z (b for overall effect: Z (b for overall effect: Z (c for overall effect: Z) (c for overall effect: Z (c for overall effect: Z) (c for overal	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3 30 30 licable	315 $(P = 0.6)$ $= 0.000$ 23 31 19 20 78 21 36 57 30 315 $(P = 0.6)$ 39 39 39 39 $= 0.001$	247 34); ² = 0 20 20 14 13 70 17 30 38 25 247 34); ² = 0 19 19	314 23 31 20 20 80 21 36 53 30 314)%	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4% 5.2% 5.2%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 4$. Test for overall effect: Z A JB 2009 iau J 2009 iau J 2009 iau J 2012 iau HW 2013 Chen XJ 2017 Subtotal (95% CI) Total events Heterogeneity: $Chi^2 = 4$. Test for overall effect: Z Subtotal (95% CI) Total events Heterogeneity: Not application of the set of the se	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P = 3 30 licable = 2.53 (P	315 (P = 0.1 = 0.000 23 31 19 20 78 21 36 57 30 315 (P = 0.1 = 0.000 39 39	247 34); ² = (20 20 14 13 70 17 30 38 25 247 34); ² = (19 19	314 23 31 20 20 80 21 36 53 30 314)%	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subotal (95% CI) Total events Teterogeneity: $Chi^2 = 4$. Test for overall effect: Z Test for overall effect i Z Tes	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P =3 30 licable = 2.53 (P 910	315 $(P = 0.6)$ 23 31 19 20 78 21 36 57 30 315 $(P = 0.6)$ 39 39 $7 = 0.01)$ 1032	247 34); ² = 0 20 20 14 13 70 17 30 38 25 247 34); ² = 0 19 19 19 19 773	314 23 31 20 20 20 20 21 36 53 30 314)% 39 39 39	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4% 5.2% 5.2%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	
Subotal (95% CI) Total events Heterogeneity: Chi [≥] = 4. Test for overall effect: Z A JB 2009 Ju J 2009 Ju J 2009 Ju J 2009 Ju J 2012 Ju HW 2013 Chang Y 2012 Ju HW 2013 Chang Y 2016 Ju L 2017 Subtotal (95% CI) Total events Heterogeneity: Chi [≥] = 4. Test for overall effect: Z J.15.6 score of study> Ku H 2018 Subtotal (95% CI)	282 .15, df = 8 = 3.74 (P 3 21 23 18 16 74 19 36 49 26 282 .15, df = 8 = 3.74 (P =3 30 licable = 2.53 (P 910	315 $(P = 0.6)$ 23 31 19 20 78 21 36 57 30 315 $(P = 0.6)$ 39 39 $7 = 0.01)$ 1032	247 34); ² = 0 20 20 14 13 70 17 30 38 25 247 34); ² = 0 19 19 19 19 773	314 23 31 20 20 20 20 21 36 53 30 314)% 39 39 39	29.4% 2.1% 6.2% 0.9% 3.1% 4.2% 1.9% 0.5% 6.6% 4.0% 29.4% 5.2% 5.2%	2.40 (1.52, 3.79) 1.57 [0.24, 10.44] 1.58 [0.53, 4.70] 7.71 [0.83, 71.69] 2.15 [0.52, 9.00] 2.64 [0.79, 8.82] 2.24 [0.36, 13.78] 15.56 [0.84, 287.40] 2.42 [0.93, 6.30] 1.30 [0.31, 5.40] 2.40 [1.52, 3.79] 3.51 [1.32, 9.30] 3.51 [1.32, 9.30]	2009 2009 2011 2012 2013 2013 2016 2017 2017	

Figure 6. Subgroup analysis for DCR.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

One-year survival rate

There were five RCTs included in this study ^(15, 16, 19, 23, 24). A fixed effect model meta-analysis was chosen because $I^2 = 36\%$. The results showed that there was no significant difference in one-year survival rate between the two groups (RR = 1.06, 95% CI = 0.91, 1.23, *P* = 0.48). Analysis of sensitivity by removing a single item method did not have a significant effect on the overall result (figure 8).

QoL

There were four RCTs included in this study ^(1, 9, 11, 15). A random effect model meta-analysis was chosen because $I^2 = 69\%$. The results showed that there was no significant difference in QoL between the two groups (RR = 1.20, 95% CI 0.95 = 1.51, P > 4.56). The funnel plot graph was asymmetric, indicating a possible publication bias (figure 9).

	Experim	ental	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Ma JB 2009	20	23	19	23	26.1%	1.05 [0.82, 1.35]	2009	+
Jiang ZG 2011	18	19	18	20	30.2%	1.05 [0.88, 1.26]	2011	+
Yang Y 2012	17	20	14	20	20.4%	1.21 [0.86, 1.71]	2012	
Zang Y 2017	47	57	27	53	23.3%	1.62 [1.21, 2.16]	2017	-
Total (95% CI)		119		116	100.0%	1.20 [0.95, 1.51]		◆
Total events	102		78					
Heterogeneity: Tau ² =	= 0.04; Chi ²	= 9.69,	df = 3 (P	= 0.02); I ^z = 69%	6		
Test for overall effect:	Z=1.54 (F	P = 0.12)					0.01 0.1 1 10 100 Favours (experimental) Favours (control)

Figure 9. Forest plot for the incidence of QoL between Endostar combined with chemoradiotherapy versus chemoradiotherapy alone.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

8

AEs

The incidence of radiation pneumonia, radiation esophagitis, bone marrow depression, liver function, renal function, digestive tract reaction, and cardiac toxicity was analyzed. There was no significant difference in any side effects between the two groups ($l^2 < 50$ for all, fixed effect model analysis) (table 3).

		•	•		
AEs	Inclusion study	l ²	RR	95%CI	Р
Radiation pneumonitis	4 RCTs ^[15-17,20]	0% (fixed effect model)	1.09	[0.84,1.42]	0.50
Radiation esophagitis	5 RCTs ^[14-17,20]	0% (fixed effect model)	1.09	[0.88,1.35]	0.43
WBC	7 RCTs ^[14,15,17,18,20-22]	0% (fixed effect model)	1.03	[0.94,1.14]	0.50
PLT	7 RCTs [14-18,20,22]	0% (fixed effect model)	0.92	[0.80,1.06]	0.26
Hb	5 RCTs ^[14,15,17,18,22]	0% (fixed effect model)	1.02	[0.81,1.29]	0.84
Liver dysfunction	5 RCTs ^[15,17,18,20,22]	10% (fixed effect model)	1.22	[0.88,1.70]	0.23
Renal dysfunction	4 RCTs ^[15,17,20,22]	0% (fixed effect model)	1.03	[0.54,1.94]	0.93
Nausea and vomiting	8 RCTs ^[15-18,20-22,24]	0% (fixed effect model)	1.11	[0.94,1.30]	0.22
Electrocardiogram abnormality	7 RCTs ^[15-20,22]	0% (fixed effect model)	1.99	[1.00,3.96]	0.05

Table 2 Commonwelling	مسمارية مشمط منطر		
Table 3. Comparative	analysis of side	e enects betweer	i two groups.

DISCUSSION

Many recent clinical studies have shown that with Endostar combined different chemotherapy regimens has a curative effect on NSCLC at different stages (25-32). However, there was no meta-analysis that investigated the effectiveness of Endostar combined with chemoradiotherapy, and thus cannot be used to guide clinical practice. This meta-analysis was conducted based on 735 patients from 11 RCTs. The results showed that ORR and DCR (71.26% and 88.62%, respectively) in the Endostar combined with chemoradiotherapy group was significantly better than that in the chemoradiotherapy group (47.14% and 75.35%, respectively) (RR_{ORR} = 1.48, 95% CI_{ORR} 1.31-1.67, PORR < 0.00001 and RRDCR = 1.17, 95% CIDCR $1.09-1.25, P_{DCR}$ < 0.00001, respectively). Subgroup analysis of age, pathological type, and quality of literature showed evaluation significant statistical differences between each subgroup of ORR and DCR (P < 0.05). Analysis of sensitivity by removing a single item did not have an obvious influence on the whole result.

This mechanism is mainly due to the presence of hypoxic cells in solid tumor tumors. The radiosensitivity of hypoxic cells is only one-third of that of oxygen-enriched cells. Vascular endothelial growth factor (VEGF) plays a key role in hypoxic cell generation and radiation resistance ^(33, 34). After radiotherapy,

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

tumor cell proliferation was accelerated and the tumor blood vessels were damaged, making the existing blood vessels unable to supply oxygen effectively and aggravating the hypoxia of the tumor cells. Hypoxia can increase the activity of hypoxia-inducible factor. Furthermore, the hypoxia-inducible gene, VEGF, was activated ⁽³⁵⁾, leading to its overexpression ⁽³⁶⁾. High expression of VEGF in tumor tissues may cause tumor angiogenesis. Neoplastic vessels lack the characteristics of normal mature vascular tissues, and are distorted or disordered, and may form giant capillaries, known as sinusoid vessels. Abnormal arteriovenous anastomosis leads to increasingly poor circulation and exacerbates the anoxia of the tumor. This vicious circle eventually leads to tumor resistance to radiotherapy (37). Recombinant human vascular (Endostar) endothelin reduce can the expression of VEGF, temporarily normalize the vascular structure of the tumor, improve the function of tumor blood vessel, enhance the cooperative use of tumor oxygen, and enhance the sensitivity of tumor cells to radiotherapy (38). Endostar not only increases the sensitivity of radiotherapy, but also normalizes the tumor blood vessels and the microenvironment, and makes the vascular structure regular and the vascular basement membrane intact, increases perivascular Sertoli cells and the nutrition ability of the vascular supply, and enhances the antierosion ability, making it easier for drugs to

act on tumor cells and have synergistic effects with chemotherapy (39). Moreover, Endol itself the effect of influencing cell has cvcle distribution and inducing apoptosis (40). Our results also showed an improvement in stabilizer rate of QoL was significantly higher in Endostar combined with chemoradiotherapy (85.86%)compared with group the chemoradiotherapy group (66.67%). This is likely related to the higher ORR and DCR in the combined Endostar and chemoradiotherapy group.

In addition, we analyzed the one-year survival rate of the Endostar plus chemoradiotherapy group (73.23%) and found higher than it was that of the chemoradiotherapy group (69.29%), but this was not statistically significant (RR = 1.06, 95%) CI = 0.91, 1.23, P = 0.48). Moreover, analysis of the literature on OoL showed that the increased rate of Karnofsky performance score in the Endostar plus chemoradiotherapy group was significant that more than of the chemoradiotherapy group. The potential reason for this could be the high incidences of ORR and DCR in patients treated with Endostar plus chemoradiotherapy. However, the difference for QoL between groups was not statistically significant (RR = 1.20, 95% CI = 0.95-1.51, P = 0.12). These non-significant differences for one-year survival rate and QoL may be attributed to the smaller number of included studies that reported these findings; moreover, the power might not be enough to detect differences. Therefore, potential further large-scale RCTs should be conducted to verify these findings.

Previous studies reported that Endostar may reduce microvessel density, and induce cardiomyocytes, leading to cardiotoxicity (41,42). Moreover, this is the main adverse reaction in clinical use of Endostar and is an important factor that limits its use (25, 43). However, in this study, we did not find a significant increased risk of serious cardiac toxicity in patients treated with Endostar. However, the probability of abnormal electrocardiogram in Endostar combined with chemoradiotherapy group (9.48%) higher was than that in chemoradiotherapy alone group (4.76%), but the difference was not statistically significant (RR = 1.99, 95% CI = 1.00, 3.96, P = 0.05). These results may show a publication bias, and more clinical studies are needed to verify this finding. addition, the incidence of radiation In pneumonia, radiation esophagitis, bone marrow depression, nausea, and vomiting were not increased in the Endostar combined with chemoradiotherapy group, which was consistent with previous studies (44,45). The non-significant differences may be attributed to the low incidence of AEs, and the power was not enough to detect the potential differences. Therefore, we suggested that the combination of Endostar with chemoradiotherapy is safe and effective for use in the treatment of advanced NSCLC.

This study has several limitations. First, most the included studies lacked adequate of subgroup analysis of data such as progression free survival and one-year survival rate. Second, the quality of the 11 articles included in this study was not high and there may have been a bias that affected the accuracy and reliability of the results. Third, the sample size of some studies is too small, and most patients were from China (because Endostar was approved by the China State Food and Drug Administration and applied in treatment of lung cancer), which may lead to geographical and ethnic differences. Finally, there are a few reports on the long-term curative effects; therefore, the long-term effects of Endostar plus chemoradiotherapy remains unclear.

CONCLUSIONS

We can conclude that Endostar combined with chemoradiotherapy may improve the ORR and DCR of patients with advanced NSCLC, and improve the QoL of patients. Furthermore, it was not shown to increase side effects, and is, therefore, worth considering in clinical practice. More high-quality clinical trials are required to verify this conclusion.

Funding: This work was supported by the Ministry of Science and Technology National Key

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

10

R&D Program [grant number 2016YBF1000905] and the Natural Science Foundation of Anhui Province [grant number 1608085QH215] and Major scientific and pharmaceutical technical problems project of China Medical Education Association in 2020 [grant number 2020KTS008].

Declarations of interest: none.

Research involving human participants and/

or animals: none. (This paper is a metaanalysis)

Informed consent: none

REFERENCES

- Ferlay J, Colombet M, Soerjomatarma I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. *Int J Cancer*, **144(8)**: 1941-1953.
- H Yu, X Tang, D Shu, C Geng, C Gong, S Hang, D Chen (2017) Impacts of multiple-field irradiation and boron concentration on the treatme of boron neutron capture therapy for non-small cell lung cancer. Int J Radiat Res, 15 (1): 1-13
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidenc e and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6): 394-424.
- Shi Y and Sun Y. (2015) Medical management of lung cancer: Experience in China. *Thorac Cancer*, 6(1): 10-16.
- Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, Zhang L, Tang J, Chen J, Wei K, Huang S, Wang J, Yu L, Zhao D, Song G, Chen J, Shen Y, Yang X, Gu X, Jin F, Li Q, Li Y, Ge H, Zhu F, Dong J, Guo G, Wu M, Du L, Sun X, He Y, Coleman MP, Baade P, Chen W, Yu XQ (2015) Cancer survival in China, 2003-2005: a population-based study. *Int J Cancer*, 136(8): 1921-1930.
- Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin, 66(1): 7-30.
- Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, Kavadi V, Garces YI, Narayan S, Iyengar P, Robinson C, Wynn RB, Koprowski C, Meng J, Beitler J, Gaur R, Curran W Jr, Choy H (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol, 16(2): 187-199.
- I Babalioglu, SC Gokee, A Hicsonmez, S Akyurek, Y Aslan, T Atakul (2020) Positron emission tomography-computed tomography guided radiotherapy planning in lung cancer. Int J Radiat Res, 18(1): 91-98
- Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med, 285(21): 1182-1186.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

- Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem, 277(31): 27872-27879.
- Folkman J (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. *Exp Cell Res*, **312** (5): 594-607.
- Cao H, Liu J and Lewith GT (2010) Traditional Chinese Medicine for treatment of fibromyalgia: a systematic review of randomized controlled trials. J Altern Complement Med, 16(4): 397-409.
- Cirocchi R, D'Ajello F, Trastulli S, Santoro A, Di Rocco G, Vendettuoli D, Rondelli F, Giannotti D, Sanguinetti A, Minelli L, Redler A, Basoli A, Avenia N (2010) Metaanalysis of thyroidectomy with ultrasonic dissector versus conventional clamp and tie. *World J Surg Oncol*, 8: 112.
- Liu J, Huang JZ, Quan JZ, Liu Y, Dong MX (2009) Clinical study of concurrent chemoradio- therapy combined with YH-16 in the treatment of local advanced non-small cell lung cancer. *Chin Med Herald*, 6(16): 253-254.
- Ma JB, Yang JL, Li ZL, Li F, Huang DD, Yan GZ, Wang JC, Lang JY (2009) A randomized clinical trail of endostar combined with concurrent chemoradiotherapy in treatment of local advanced non-small cell lung cancer. J Clin Med Pract, 13(11): 20-24.
- Ding Y, Wang XC, Yang F, Lin LZ, Liu YM, Yang S, Liu XQ, Peng M, Chen SZ (2011) Recombinant human endostatin combined with concurrent chemoradiotherapy in treatment of locally advanced non-small cell lung cancer. J Guangdong Pharm Coll, 27(2): 202-206.
- Jiang ZG, Li SK, Yue WB, Huang PB, Wang ZF, Yu FM, Yang QL (2011) Endostar combined with concurrent chemoradiotherapy in treatment of local advanced non-small cell lung cancer in elderly patients. *Chin J Pract Med*, **38(18)**: 55-58.
- Yang Y, Sun XC, Liu YB, Mu QX, Cao YD, Zhang S (2012) Clinical research on the treatment of non-small-cell carcinoma by recombinant human endostatin and synchronous chemoradiotherapy. *Prog Modern Biomed*, **12(34)**: 6696-6698.
- Chen XJ, Wang JH, Liu YQ, Jiang Y (2013) Clinical study of Rh-endostatin combined with chemotherapy followed by concurrent radiotherapy for the treatment of locally advanced non-small cell lung cancer. *Henan Medical Re*search, 22(3): 337-339.
- 20. Liu HW, Yu SH, Liu FL, Liu JY, Liu YG, Ren XW, Zhao H, Li H, Hua XM (2013) Efficacy and toxicity of recombinant human endostatin combined with radiotherapy and chemotherapy in the treatment of lung cancer. *Chin Hosp Pharm* J, **33(24)**: 2056-2059.
- Zhang Y and Zou CF (2016) Endostar combinde with chemoradiotherapy for newly diagnosed advanced nonsmall cell lung cancer. *Med J Qilu*, **31(1)**: 13-17.
- Zang Y (2017) Effect of endostar plus TP regimen chemotherapy combined with radiotherapy on serum HMGA2 and HMGB1 in patients with NSCLC. *Modern Oncology*, 25 (24): 3997-4000.
- Liu L, Li T, Lang JY, Zhang J, Li BS, Xu K (2017) Study on Concomitant Radiotherapy and Chemotherapy Combinating with Endostatin for IB and ID Stage Non-small Cell Lung Cancer. J Cancer Control Treat, 30(4): 265-270.
- 24. Xu H, Qin WJ, Guo RX, XiongBL, Li SG, Hou RR (2018) Concurrent Radiotherapy and Chemotherapy Combined with

Endostar for Locally Middle and Advanced Non-small Cell Lung Cancer. *The Practical Journal of Cancer*, **33(3)**: 450-453..

- Yang L, Wang JW, Cui CX, Huang J, Zhang HP, Li ST, Sun Y, (2005) Rh-endostatin(YH-16) in combination with vinorelbine and cisplatin for advanced non-small cell lung cancer:a multicenter phase I trial. *Chinese New Drugs Journal*, 14(2): 204-207.
- 26. Wang J, Sun Y, Liu Y, Yu Q, Zhang Y, Li K, Zhu Y, Zhou Q, Hou M, Guan Z, Li W, Zhuang W, Wang D, Liang H, Qin F, Lu H, Liu X, Sun H, Zhang Y, Wang J, Luo S, Yang R, Tu Y, Wang X, Song S, Zhou J, You L, Wang J, Yao C (2005) Results of randomized, multicenter, double-blind phase β trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. *Zhongguo Fei Ai Za Zhi, 8*(4): 283-290.
- 27. Sun Y, Wang JW, Liu YY, Yu QT, Zhang YP, Li K, Xu LY, Luo SX, Qin FZ, Chen ZT, Liu WC, Zhou QH, Chen Q, Nan KJ, Liu XQ, Liu W, Liang HJ, Lu HS, Wang XW, Wang JJ, Song SP, Tu YR, Zhou JM, Li WL, Yao C (2013) Long-term results of a randomized, double-blind, and placebo-controlled phase β trial: Endostar (rh-endostatin) versus placebo in combination with vinorelbine and cisplatin in advanced non-small cell lung cancer. *Thorac Cancer*, *4*(*4*): 440-448.
- 28. Han BH, Xiu QY, Wang HM, Shen J, Gu AQ, Luo Y, Bai CX, Guo SL, Liu WC, Zhuang ZX, Zhang Y, Zhao YZ, Jiang LY, Shi CL, Jin B, Zhou JY, Jin XQ (2011) A multicenter, randomized, double-blind, placebo-controlled safety study to evaluate the clinical effects and quality of life of paclitaxel-carboplatin (PC) alone or combined with endostar for advanced non-small cell lung cancer (NSCLC). Zhonghua Zhong Liu Za Zhi, **33(11)**: 854-859.
- 29. Kong Q, Wang XY, Jiang RC, Ba Y, Li K (2016) Efficacy and prognostic factors of 178 advanced non-small lung cancer patients undergoing different second-line chemotherapeutic regimens. *Zhonghua Zhong Liu Za Zhi*, **38(4)**: 294-9.
- 30. Wang J, Li K, Sun T, Zhang MJ, Li WL, Yao Q, Liu W, Ding CM, He ZY, Mao WD, Wang HM, Zhang Y, Zhou XL (2013) Efficacy and safety of rh-endostatin combined with docet-axel in second-line or intolerant toxicity for first-line treatment in patients with advanced non-small cell lung cancer. *Zhonghua Zhong Liu Za Zhi*, **35(8)**: 618-622.
- Zhu Q, Zang Q, Jiang ZM, Wang W, Cao M, Su GZ, Zhen TC, Zhang XT, Sun NB, Zhao C (2015) Clinical Application of Recombinant Human Endostatin in Postoperative Early Complementary Therapy on Patients with Non-small Cell Lung Cancer in Chinese Mainland. Asian Pac J Cancer Prev, 16(9): 4013-4018.
- 32. Zhao X, Su Y, You J, Gong L, Zhang Z, Wang M, Zhao Z, Zhang Z, Li X, Wang C (2016) Combining antiangiogenic therapy with neoadjuvant chemotherapy increases treatment efficacy in stage 2A (N2) non-small cell lung cancer without increasing adverse effects. Oncotarget, 7(38): 62619-62626.
- Eroglu C, Orhan O, Unal D, Dogu GG, Karaca H, Dikilitas M, Oztürk A. Ozkan M, Kaplan B (2013) Concomitant chemoradiotherapy with docetaxel and cisplatin followed by consolidation chemotherapy in locally advanced unresectable non-small cell lung cancer. Ann Thorac Med, 8(2): 109-15.
- Sen F, Saglam EK, Toker A, Dilege S, Kizir A, Oral EN, Saip P, Sakallioglu B, Topuz E, Aydiner A (2011) Weekly docetaxel

and cisplatin with concomitant radiotherapy in addition to surgery and/or consolidation chemotherapy in stage I non -small cell lung cancer. *Cancer Chemother Pharmacol*, **68** (**6**): 1497-505.

- Hirota K. (2002) Hypoxia-inducible factor 1, a master transcription factor of cellular hypoxic gene expression. J Anesth, 16(2): 150-159.
- 36. Artman T, Schilling D, Gnann J, Molls M, Multhoff G, Bayer C (2010) Irradiation-induced regulation of plasminogen activator inhibitor type-1 and vascular endothelial growth factor in six human squamous cell carcinoma lines of the head and neck. Int J Radiat Oncol Biol Phys, 76(2): 574-582.
- Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEG-FR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. *Cancer Cell*, 6(6): 553-563.
- 38. Das J, Samadder A, Das S, Paul A, Khuda-Bukhsh AR (2016) Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target: -Anti -cancer Potential of Nano-betulinic Acid in Lung Cancer. J Pharmacopuncture, **19(1)**: 37-44.
- Chen Z, Luo Q, Zhou Z, Jian H, Lu S, Liao M (2017) Endostar in combination with postoperative adjuvant chemotherapy prolongs the disease free survival of stage IIIA NSCLC patients with high VEGF expression. Oncotarget, 8(45): 79703-79711.
- 40. Zhang L, Ge W, Hu K, Zhang Y, Li C, Xu X, He D, Zhao Z, Zhang J, Jie F, Chen Y, Zheng Y (2012) Endostar downregulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells. *Mol Biol Rep*, **39(1)**: 89-95.
- 41. Wu G, Li ZY, Zhu F, Hu JL, Ren JH, Chen J, Nong L, Zhang Z, Liu P (2010) Inhibition effect of Endostar on angiogenesis partly through VEGF 165b, the inhibitory splice variant of VEGFA. Chinese Journal of Cancer Prevention & Treatment, **17(1)**: 37-40.
- 42. Qin J, Qian XY, Li AM, Luo RC (2013) Target and mechanism of cardiotoxicity of recombinant human endostatin. Adverse Drug Reactions Journal, 15(6): 336-341.
- 43. Yang L, Wang JW, Tang ZM, Liu XW, Huang J, Li ST, Dong Y, Zhang HP, Xue L, Chu DT, Sun Y (2004) A phase I clinical trial for recombinant human endostatin. *Chinese New Drugs Journal*, **13(6)**: 548-553.
- 44. Zhai Y, Ma H, Hui Z, Zhao L, Li D, Liang J, Wang X, Xu L, Chen B, Tang Y, Wu R, Xu Y, Pang Q, Chen M, Wang L (2019) HELPER study: A phase II trial of continuous infusion of endostar combined with concurrent etoposide plus cisplatin and radiotherapy for treatment of unresectable stage β non-small-cell lung cancer. *Radiother Oncol*, **131**: 27-34.
- 45. Xu H, Lv D, Meng Y, Wang M, Wang W, Zhou C, Zhou S, Chen X, Yang H (2020) Endostar improved efficacy of concurrent chemoradiotherapy with vinorelbine plus carboplatin in locally advanced lung squamous cell carcinoma patients with high serum Lp(a) concentration. Ann Palliat Med. pii: apm.2020.01.16. doi: 10.21037/apm.2020.01.16.

Int. J. Radiat. Res., Vol. 19 No. 1, January 2021

12

[DOI: 10.29252/ijrr.19.1.1