INTRODUCTION

Naturally occurring radioactive materials (NORMs) are mostly nuclides with the half-life of hundreds millions of years. Natural radioactivity is the major source of radiation to which humans are exposed and is responsible for more than 75% of all ionizing radiation (1). Also, exposure to background natural radiation (2.4 mSv/person/year) accounts for approximately 80% of the total radiation dose (2). Radioactive isotopes occur naturally in the environment but can accumulate due to industrial activities, so NORMs can be found in several industries, such as mining and milling activities, ore processing, cement production and petroleum industry (3,4). Recently, more attention is given to occupational health hazards in petroleum industries, due to higher exposure rates. In such industries NORMs waste includes 238U, 235U, 232Th and etc. These materials are brought to the earth surface in the fossil fuel exploration and extraction processes and radioactivity levels may exist above the background radioactive levels (5). The dominating radium radionuclides, 226Ra and 228Ra, range from 1 to 1000 kBq/kg (6).

Several studies have measured the natural radioactivity of oil and gas exploration wastes in the world (5,7-11). The Khuzestan province, in southwest in the Iran, is rich in oil and gas areas. The aim of this study was to measure the levels of radioactivity in samples of petroleum drilling processes and also the activity concentrations of the 232Th, 226Ra and 40K, in the samples in the area. The absorbed dose rates, radiation hazard indices and radium equivalent activity of gathered samples were calculated for sampling locations. Thus, evaluation of the extent of...
radiation exposure on these sites is of the utmost importance.

MATERIALS AND METHODS

In total, ten soil samples were randomly taken from different drilling areas in Khuzestan province. Figure 1 shows the map of sampling site of drilling areas. 2 Kg soil for each sample was picked up from the drilling cutting waste. The regions of samples are shown in table 1. In order to measure the radioactivity, soil samples were prepared according to the standard method ASTM C999 (11). As mentioned in the method, soil samples were placed in an oven (Jeiotech model OF-01E, South Korea) with a temperature of 110 °C for 12 hours to dry completely. In the next step, the specimens were placed in ball mill (Retsch MM-400, Germany) with ceramic balls for 1 night and then to obtain uniform and homogeneous powder, each sample was sieved with a 500μm mesh (US.NO.35). Next, the samples were placed in 500 mL marinelli beakers, closed tightly and stored in a cool place for at least four weeks. The activity concentrations were measured as follows, the samples were analysed with gamma-ray spectrometry with high purity germanium (HPGe) detector (GC 2020-7500) (CANBERRA Xtra, USA). The detector has a relative efficiency of 20%, resolution of 1332 kev photons of 60Co. A multichannel analyser card (MCA) was installed in a PC computer for analysis purposes. The RGU standard sources (for U calibration and its chain elements), RGTh (for Th calcification and its chain elements) and RGK (for K calibration) were used for purpose of calibrations. Minimizing the background radiation is vital in gamma spectrometry, for this purpose, large lead shields with polyethylene layers were used. The time duration for each sample counting was 86400 s. A distilled water sample spectrum in the same geometry was used as background correction which was subsequently subtracted from each spectrum.

The equation (1) was used to determine the activity concentration (A) of each radionuclide

$$A(Bq/g) = \frac{C_{sym}}{100}$$

Where, C: the full-energy peak count rate for the radionuclide of interest (in counts per second), E: the amount of efficiency of detection for the specific energy, y: the correspondent gamma-ray yield, and m: the sample mass (gr).

The radiation emitted from environmental radionuclides is called the absorbed dose rate. This factor, $D(nGy/h)$ in air at the height of 1m above the ground level with regard to the concentrations of 226Ra, 232Th and 40K was calculated according equation (2) (12):

$$D_{n}=(0.427C_{Ra}+0.662C_{Th}+0.043C_{K}) \times 10^{-3}$$

C_{Ra}, C_{Th} and C_{K} are the concentrations in Becquerel per kilogram of 226Ra, 232Th and 40K, respectively (15,16). As the recommended value is 55 nGy/h by UNSCEAR, D_{n} must be lower than it (1).

The annual effective dose equivalent (AEDE) can be obtained from the equation (3) (1):

$$AEDE(mSv/\gamma)=(D(nG/h) \times 0.7(Sv/G) \times 0.2 \times 8760) \times 10^{-6}$$

In order to examine the health outcomes of the absorbed dose rates, the AEDE should be calculated. As the UNSCEAR (1) reports, a value of 0.7 Sv/Gy was used as the conversion coefficient arising from absorbed dose in the air to effective dose received by humans and another 0.2 value for the outdoor occupancy factor.

Total activities of materials that included 232Th, 226Ra and 40K, was calculated by the radium equivalent index 226Ra$_{eq}$ was calculated according equation (4) (1).

$$^{226}Ra_{eq}=C_{Ra} + 1.43C_{Th} + 0.077C_{K}$$

Where C_{Ra}, C_{Th} and C_{K} represent the activities of 40K, 232Th and 226Ra (238U-series) (Bq/kg) respectively.

The external hazard index (H_{ex}) is defined to limit the external γ -radiation dose and calculated by equation (5) (13).
\[H_{\text{ex}} = \frac{C_{\text{Ra}}}{370} + \frac{C_{\text{Th}}}{259} + \frac{C_{\text{K}}}{4810} \leq 1 \quad (5) \]

The internal hazard index \((H_{\text{in}}) \) which is obtained from the equation (6), measures the internal exposure to radon and its daughter products\(^{13}\).

\[H_{\text{in}} = \frac{C_{\text{Ra}}}{185} + \frac{C_{\text{Th}}}{259} + \frac{C_{\text{K}}}{4810} \leq 1 \quad (6) \]

The level of \(\gamma \)-radiation hazard associated with the natural radionuclides can be estimated by another activity utilization index which is evaluated using this equation (7)\(^{14}\).

\[I_{\gamma} = \frac{A_{\text{Ra}}}{150} + \frac{A_{\text{Th}}}{100} + \frac{A_{\text{K}}}{1500} \leq 1 \quad (7) \]

Where \(A_{\text{K}}, A_{\text{Ra}} \) and \(A_{\text{Th}} \) are the activity concentrations of and \(^{40}\)K, \(^{226}\)Ra and \(^{232}\)Th respectively, in Bq/kg for the samples. \(I_{\gamma} \) should be less or equal to 1.

Statistical analysis

Descriptive statistics and \(t \)-test were used to present the data. SPSS version 19 and Excel version 2013 were employed for data analysis. \(P \) value was considered less than 0.05.

RESULTS

Table 1 shows the radioactivity concentrations of naturally originated radionuclides of \(^{232}\)Th, \(^{40}\)K and \(^{226}\)Ra in samples. According to UNSCEAR values for \(^{232}\)Th (50 Bqkg\(^{-1}\)), \(^{40}\)K (50 Bqkg\(^{-1}\)) and \(^{226}\)Ra (500 Bqkg\(^{-1}\)), concentration in all soil samples were lower than the recommended values\(^{1}\). The maximum concentrations of \(^{232}\)Th and \(^{226}\)Ra in soil samples are reported for sample No.5, with activity concentration of 23.8 and 49.99 Bq/Kg respectively. Also, maximum concentration of \(^{40}\)K (427 Bq/Kg) belongs to sample number 2. The minimum concentration of \(^{232}\)Th, \(^{226}\)Ra, and \(^{40}\)K are 4.99 Bq/Kg, 17.90 Bq/Kg for \((s_5) \) and 52.59 Bq/Kg for sample No.9, respectively. Table 1 also shows that only 40% of soil samples have activity concentrations of \(^{226}\)Ra higher than the world average value\(^{1}\). The case is just 20% \(^{40}\)K in soil samples be higher than average value.

Table 2 reveals the results of absorbed dose rate, AEDE and \(^{226}\)Ra\(\text{eq} \). Calculated gamma absorbed dose rate showed that all values are lower than the recommended value 55 nGy/h. The minimum value of the total absorbed dose rate was 13.21 nGy/h in sample 9. And the maximum value was 55.03 nGy/h in sample 5 (table 2). The annual effective dose equivalent...
varied from 0.016 to 0.067 mSv/y (table 2). The maximum and minimum of \(^{226}\)Ra\(_{eq}\) belonged to sample 5 (116.13 Bq/Kg) and sample 2 (29.04 Bq/Kg), respectively. The hazard indices (H\(_ex\) and H\(_in\)) for samples were calculated and are shown in table 2. According to the obtained values, the hazard indices were less than one unit. Also, results of the obtained values of I\(_\gamma\) for samples were less than one unit. A comparison of \(^{232}\)Th, \(^{226}\)Ra and \(^{40}\)K concentrations of samples from various regions of the world are given in table 3. Figure 2 shows the activity concentration of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K for all samples. Here the values are shown related to critical limit value.

Table 2. Results of the absorbed dose rate (D), the annual effective dose equivalent rates (AEDE), the radium equivalent activity (Ra\(_{eq}\)), the index of external and internal radiation hazard (H\(_ex\), H\(_in\)) and Activity utilization index(I\(_\gamma\)).

<table>
<thead>
<tr>
<th>sample</th>
<th>D(nGy/h)</th>
<th>AEDE(mSv/y)</th>
<th>Ra(_{eq})(Bq/Kg)</th>
<th>H(_ex)≤1</th>
<th>H(_in)≤1</th>
<th>I(_\gamma)≤1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>45.067</td>
<td>0.055</td>
<td>95.996</td>
<td>0.259</td>
<td>0.381</td>
<td>0.696</td>
</tr>
<tr>
<td>s2</td>
<td>41.573</td>
<td>0.051</td>
<td>85.723</td>
<td>0.231</td>
<td>0.326</td>
<td>0.643</td>
</tr>
<tr>
<td>s3</td>
<td>43.773</td>
<td>0.054</td>
<td>93.470</td>
<td>0.252</td>
<td>0.387</td>
<td>0.677</td>
</tr>
<tr>
<td>s4</td>
<td>48.824</td>
<td>0.060</td>
<td>102.392</td>
<td>0.276</td>
<td>0.386</td>
<td>0.753</td>
</tr>
<tr>
<td>s5</td>
<td>55.032</td>
<td>0.067</td>
<td>116.132</td>
<td>0.314</td>
<td>0.449</td>
<td>0.849</td>
</tr>
<tr>
<td>s6</td>
<td>39.854</td>
<td>0.049</td>
<td>83.355</td>
<td>0.225</td>
<td>0.315</td>
<td>0.615</td>
</tr>
<tr>
<td>s7</td>
<td>44.825</td>
<td>0.055</td>
<td>94.818</td>
<td>0.256</td>
<td>0.378</td>
<td>0.693</td>
</tr>
<tr>
<td>s8</td>
<td>30.797</td>
<td>0.038</td>
<td>67.384</td>
<td>0.182</td>
<td>0.265</td>
<td>0.473</td>
</tr>
<tr>
<td>s9</td>
<td>13.212</td>
<td>0.016</td>
<td>29.095</td>
<td>0.079</td>
<td>0.127</td>
<td>0.204</td>
</tr>
<tr>
<td>s10</td>
<td>19.320</td>
<td>0.024</td>
<td>41.955</td>
<td>0.113</td>
<td>0.166</td>
<td>0.297</td>
</tr>
<tr>
<td>Mean</td>
<td>38.23</td>
<td>0.047</td>
<td>81.03</td>
<td>0.22</td>
<td>0.32</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table 3. Comparison of values for \(^{232}\)Th, \(^{226}\)Ra and \(^{40}\)K concentrations of samples from various regions of the world

<table>
<thead>
<tr>
<th>Country</th>
<th>Activity Concentration (Bq kg(^{-1}))</th>
<th>Radiological parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^{232})Th</td>
<td>(^{226})Ra</td>
<td>(^{40})K</td>
</tr>
<tr>
<td>Turkey</td>
<td>83.1</td>
<td>79.3</td>
<td>1273.7</td>
</tr>
<tr>
<td>Greece</td>
<td>107.6</td>
<td>74</td>
<td>88.1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>52</td>
<td>-</td>
<td>610.8</td>
</tr>
<tr>
<td>Brazil</td>
<td>107.6</td>
<td>72.8</td>
<td>1127.1</td>
</tr>
<tr>
<td>Turkey</td>
<td>64.7</td>
<td>78.9</td>
<td>238.4</td>
</tr>
<tr>
<td>Iran (Golestan)</td>
<td>31</td>
<td>23</td>
<td>453</td>
</tr>
<tr>
<td>World average</td>
<td>45</td>
<td>32</td>
<td>412</td>
</tr>
<tr>
<td>Iran</td>
<td>16.2</td>
<td>36.2</td>
<td>276.4</td>
</tr>
</tbody>
</table>

DISCUSSION

This study is one of the first attempts in order to assess radionuclides activity concentrations of \(^{40}\)K, \(^{226}\)Ra and \(^{232}\)Th in soil samples taken from oil drilling cutting waste in Iran, Khuzestan province. The mean activity concentrations of \(^{40}\)K, \(^{226}\)Ra, and \(^{232}\)Th were 276.468, 36.684 and 16.126 Bq kg\(^{-1}\), respectively. Which \(^{226}\)Ra was higher than the amounts reported for Iran (Golestan (23 Bq kg\(^{-1}\))) and the average amount reported for the world in general but it was lower than the other parts of the world \((8-10, 19-22)\). In a study by Mouandza et al. (2018) the results showed that 74% of measured area had activity concentrations of \(^{226}\)Ra higher than world average value \((23)\), however the present study reports this difference for about 40% of samples. This different value can be explained by this fact...
that in Mouandza study the samples were taken from a location uranium main. Also, for the case of 232Th, our findings showed a lower amount than any other studies \cite{8-10,19-23}. On the other hand the measured values for 40K, were lower than all mention studies except Turkey (238.4 Bq.kg$^{-1}$) and Greece (88.1 Bq.kg$^{-1}$) \cite{9,21}. The mean activity concentrations are lower than the world mean values identified by UNSCEAR for 40K and 232Th \cite{1}. The average absorbed dose rates (D), Radium equivalent activity (Raeq) and annual effective dose equivalent (AEDE) and various hazard index ($H_{\text{ex}}, H_{\text{in}}$ and I_Y) for samples were calculated and were 38.228 nGy/h, 0.047 mSv/y, 81.032 Bq/Kg, 0.219, 0.318 and 0.59, respectively. All of the above mentioned values are below the permissible limit.

CONCLUSION

Present study has analyzed the natural radioactivity content of ten different soil samples of oil drilling cutting wastes for the measurement of radioactivity. The findings of this study demonstrated that all the calculated values are below the recommended maximum values in the UNSCEAR reports, but were higher than the world average values in some cases. It can be concluded that it is safe for workers who are working in oil and gas drilling sites in these regions of Khuzestan province, in terms of radiation hazards. This study could be used as a track for further investigations and this data might be useful for the naturally occurring radioactivity mapping.

ACKNOWLEDGMENT

This article presented some results of a thesis by Jamile Deris. Ahvaz Jundishapur University of Medical Sciences – U-97085.

Funding/Support

This study was supported by the Ahvaz Jundishapur University, of Medical Sciences, Ahvaz, Iran.

Conflicts of interest: Declared none.

REFERENCES