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Deep learning-based synthetic CT generation from MR 
images: comparison of generative adversarial and residual 

neural networks 

INTRODUCTION 

Computed tomography (CT) plays a significant 
role in treatment planning and dose calculation in the 
radiation therapy (RT) chain by providing                             
3-dimensional attenuation coefficient maps. These 
are used to calculate organ and tissue-specific doses 
(1). Modern techniques, such as intensity-modulated 
radiation therapy (IMRT) and volumetric-modulated 
radiation therapy (VMAT), rely on anatomical images 
to accurately define the target and organs at risk 
(OAR) for proper dose delivery (1, 2). In clinical             
practice, the use of magnetic resonance imaging 
(MRI) for treatment planning is increasing due to the 
high contrast soft-tissue discrimination and sharper 
organ boundaries possible in comparison with CT 
imaging. Moreover, some studies have shown                 
that functional MRI information, including                  
diffusion-weighted imaging (DWI) and dynamic       

contrast-enhanced imaging, could aid in identifying 
active tumor sub-volumes in head and neck cancer (3). 

Currently, MR images are integrated into the RT 
chain through a rigid or deformable registration to 
the reference CT image for the precise delineation of 
the target volume and OAR. The electron density           
information from CT images is used for dose                  
calculations (2, 3). However, errors associated with MR 
to CT image registrations introduce a systematic          
uncertainty leading to a significant dosimetric impact, 
particularly for small tumors in the vicinity of OARs (4, 

5). To avoid these errors in RT planning as well as to 
reduce the cost of therapy, MRI-only RT planning is 
introduced which only relies on MR images in the 
radiotherapy workflow. MRI-only RT obviates the 
need for MR and CT image registration and                  
additionally decreases the number of imaging                   
sessions (CT imaging) and its associated costs in a 
workflow. This leads to a reduction in the received 
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ABSTRACT 

Background: Currently, MRI-only radiotherapy (RT) eliminates some of the concerns 
about using CT images in RT chains such as the registration of MR images to a separate 
CT, extra dose delivery, and the additional cost of repeated imaging. However, one 
remaining challenge is that the signal intensities of MRI are not related to the 
attenuation coefficient of the biological tissue. This work compares the performance 
of two state-of-the-art deep learning models; a generative adversarial network (GAN) 
and a residual network (ResNet) for synthetic CTs (sCT) generation from MR images. 
Materials and Methods: The brain MR and CT images of 86 participants were 
analyzed. GAN and ResNet models were implemented for the generation of synthetic 
CTs from the 3D T1-weighted MR images using a six-fold cross-validation scheme. The 
resulting sCTs were compared, considering the CT images as a reference using 
standard metrics such as the mean absolute error (MAE), peak signal-to-noise-ratio 
(PSNR) and the structural similarity index (SSIM). Results: Overall, the ResNet model 
exhibited higher accuracy in relation to the delineation of brain tissues. The ResNet 
model estimated the CT values for the entire head region with an MAE of 114.1±27.5 
HU compared to MAE=-10.9±147.0 HU obtained from the GAN model. Moreover, both 
models offered comparable SSIM and PSNR values, although the ResNet method 
exhibited a slightly superior performance over the GAN method. Conclusion: We 
compared two state-of-the-art deep learning models for the task of MR-based sCT 
generation. The ResNet model exhibited superior results, thus demonstrating its 
potential to be used for the challenge of synthetic CT generation in PET/MR AC and 
MR-only RT planning.  
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dose, particularly for the patients requiring multiple 
scans during their treatment process (1-3, 5). However, 
MRI-only RT planning faces the challenge of                    
geometric distortion due to the magnetic field                 
non-uniformity, the absence of a cortical bone signal 
in conventional MR images (6, 7), and the lack of an 
attenuation coefficient map (8, 9). The primary                   
challenge for MR-only RT planning stems from the 
fact that the signal intensities of MRI correlate with 
the tissue proton density and tissue relaxation                
properties. MR signals do not relate to the photon 
attenuation coefficients of the tissues. On the other 
hand, the voxel intensity of the CT images directly 
reflects the radiological characteristics of the tissue 
(1). The same challenge is faced by the MR-based              
attenuation correction (MRAC) in the hybrid PET/MR 
to convert the patient’s MR image into an attenuation 
coefficient map. In this regard, a number of                 
approaches have been proposed for the generation of 
synthetic (pseudo) CT images from MRI data (10-12). 

There are three major categories of methods for 
synthetic CT generation: tissue segmentation (13),  
atlas (6, 8), and artificial intelligence (14). Tissue               
segmentation-based approaches create attenuation 
or photon coefficient maps via the bulk segmentation 
of MR images into few tissue classes followed by the 
assignment of their corresponding coefficient values 
(13, 15). Discriminating between bone and air tissues is 
one of the major challenges since bone and air have 
very low and roughly similar signals on conventional 
MR sequences. The use of other MR sequences, such 
as the ultra-short echo time (UTE) and zero-echo-
time, has eliminated this problem. However, these 
sequences also suffer from an increased scanning 
time or low signal-to-noise ratio (15, 16). The                   
atlas-based approach consist of deformable                     
registration algorithms for the purpose of aligning 
the target MRI to the numbers of MRIs in an atlas  
database, followed by the assignment of CT numbers 
in the atlas database for each voxel of the target MRI 
(11, 17).  

Recently, machine learning, especially                         
convolutional neural networks (CNN), has emerged 
as a promising approach to improve the quality                  
of medical image analysis including image                     
segmentation, denoising, reconstruction, and                   
particularly synthesizing pseudo-CTs from MR                 
images (18, 19). Many studies have been conducted to 
address the challenge of synthetic-CT generation 
from MR images using different algorithms/
architectures or convolutional neural networks.  
However, only a few deep learning models are being 
frequently used due to their robust, accurate, and 
reliable performance. Generative adversarial              
networks (GAN) and residual networks are among 
the highly popular deep learning models that have 
shown promising results in various fields of medical 
image analysis (20-25). GAN networks, owing to their 
sophisticated architecture benefiting from the            

generator and discriminator compartment, and            
residual networks, owning to their large receptive 
fields, are able to offer relatively optimal solutions for 
a vast range of image-related problems such as  
transformation and segmentation.  

This study set out to compare two state-of-the-art 
deep learning models, specifically the generative  
adversarial network (GAN) and residual network, for 
the task of MR-guided synthetic CT generation.             
Although many approaches/algorithms have been 
proposed in the previous works concerning the              
generation of synthetic (pseudo) CT images from MRI 
data (6-8, 13, 14), deep learning-based approaches are of 
special interest owing to their promising and                 
superior performance (10, 26). Among the various deep 
learning models, GAN and residual deep learning 
models are frequently used for different purposes in 
clinical and research settings (25-29). The major aim of 
this study was to compare the two popular deep 
learning models for the challenging task of                        
MR-guided synthetic CT generation related to their 
application in MR-only radiation planning (11, 19) and 
MR-guided PET attenuation correction (11). 

 

 

MATERIALS AND METHODS 
 

CT and MRI data acquisition   
The patient population consisted of 46 men (mean 

age: 61±12 years, mean weight: 79.3±11 kg) and 40 
women (mean age: 57±7 years, mean weight: 
71.2±10 kg) who underwent brain CT and MRI scans. 
The clinical indications included neurodegenerative 
disease (40 men and 30 women), epilepsy (3 men 
and 5 women), and different graded brain tumors (3 
men and 5 women). This study was approved by the 
Ethics code of 241345CH (date: 20/10/2018). The 
MRI scans were performed using 3T MAGNETOM 
Skyra (Siemens Healthcare, Erlangen, Germany) with  
a 64-channel head coil using a T1-weighted 
(magnetization-prepared rapid gradient-echo                 
(MP-RAGE)) sequence and the parameters of TE/TR/
TI, 2.3 ms/1900 ms/970 ms, flip angle 8º; NEX = 1. 
The T1-weighted MR images were saved in a matrix 
dimension of 255×255×250 with a voxel size of 
0.86×0.86×1 mm. The CT image acquisitions with 120 
kVp and 20 mAs were performed on a Toshiba               
Aquilion (Toshiba Co., Tokyo, Japan). The matrices of 
CT images were 512×512×149 voxels with a voxel 
size of 0.97×0.97×1.5 mm. 

Due to the fact that the MRI and CT image                    
acquisitions were not performed simultaneously, the 
MR images were aligned to the corresponding CT 
images. To this end, a mutual information-based             
image registration algorithm, which performs a             
combination of rigid and non-rigid deformation               
implemented in Elastix platform (based on the ITK 
library) (https://elastix.lumc.nl/, Netherlands), was 
employed to align the MR and CT images. Afterwards, 
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the resolution of the aligned MR images was                  
converted to the resolution of the corresponding CT 
images as a preprocessing step for the training and 
validation processes.  

 
Network architecture 

This study set out to compare two state-of-the-art 
deep convolutional neural network algorithms in the 
context of MR-guided synthetic CT generation. These 
include the ResNet and GAN models which have been 
extensively employed for the task of image                         
segmentation and inter-modality image regression. In 
the following sections, the architecture of the two 
deep learning models has been described.  

 
ResNet architecture 

Deep residual networks, formed by a number of 
residual blocks, were introduced by He et al. to                
address the degradation problem in the training               
process of deep neural networks and to reduce the 
computational cost (30). Residual or shortcut                       
connections result in skipping one or more layers in a 
network to address the gradient vanishing issue    
causing the direct propagation of signals in forward 
and backward paths from one block to other blocks 
(figure 1). It should be noted that a network with n 
residual blocks which has 2n unique paths would  
result in decreasing the effective receptive field. 
Therefore, the incorporation of residual connections 
in the training of a network would reduce the border 
effects of convolution leading to decreased distortion 
near to the borders.  

The proposed architecture of ResNet, illustrated 
in figure 2, consists of 20 convolutional layers        
wherein every two convolutional layers are stacked 
together by residual connections. Each convolutional 
layer is composed of an element-wise rectified linear 
unit (ReLU) and a batch normalization (BN) layer. 
The network takes the MR images as the input and 
provides stimulated CT images as the output. In the 
initial layers, 3×3×3 filters are applied that are               
related to the low-level image features. To extract the 
mid-level and high-level image features, the number 
of kernels is multiplied by a factor of two or four in 
the deeper layers. The output of the final layer, the 
fully connected softmax layer, is in the same                 
dimension as that of the input image (20). 

GAN architecture   
General adversarial networks (GANs) were                   

suggested by Goodfellow et al. in 2014. This model 
type consists of two adversarial generative and              
discriminative components that are trained                
simultaneously. The generator model learns to             
generate new data while the discriminator                
determines the probability of whether the input is 
data generated by the generator (fake) or real. The 
usage of adversarial nets when both models are             
multilayer perceptrons is more straightforward. In 
this regard, the samples are generated by passing 
random noise through a multilayer perceptron            
generator with a differentiable function that                
represents a mapping to the data space with a                   
parameter of θ_G. The second multilayer perceptron 
is the discriminator with a parameter of θ_D which 
determines the likelihood of false or true for the             
input data.  

The optimization of adversarial nets is similar to 
the optimization of a two-player zero-sum minimax 
game conducted by jointly optimizing the cost              
functions of the discriminator and generator. For this 
purpose, each of the θ_D and θ_G parameters were 
updated once in every iteration to decrease the              
values of the respective cost functions. As the                  
discriminator is trained to enhance the                       
differentiation ability, the generator is also trained to 
maximize the probability of the discriminator                   
assigning a true label to the false (artificial) data. In 
other words, the generator is intended to generate 
data that has a minimum difference compared to real 
data (31). 

In the generator network, first, random Gaussian 
noise that has zero mean and unit variance was              
projected followed by the ReLU activation function to 
form the first feature maps. In order to achieve the 
image with respective sizes, up-scaling layers were 
used. Each of the up-scaling layers is composed of a 
transposed convolution with 2×2 stride, and                
convolution with batch normalization (BN) and ReLU. 
They duplicate the size of the previous feature maps 
and halve the number of channels. The final layer has 
two parts: first a convolution with BN and ReLU, and 
second, a convolution with a hyperbolic tangent       
function without BN to maintain the true statistical 
features of the data.  

The discriminator network accepts images and its 
correlated three-channel pixel coordinates as the  
input. The first convolutional layer with a kernel size 
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Figure 1. A building block of the residual network. 

Figure 2. The architecture of ResNet model. 
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of 5×5 and leaky ReLU (LReLU) as the activation 
function forms the initial feature maps that have the 
same size as the input image. By adopting Resnet 
blocks and down-scaling layers, the network                
duplicates the number of channels and halves the 
feature maps in each layer. Each Resnet layer has two 
convolutions, both with BN and LReLU, and each 
down-scaling layer has a 2×2 stride convolution with 
BN and LReLU.  The final Logit includes a Resnet, a 
projection, an LReLU, and another projection                 
respectively. Except for the first layer in the                 
discriminator, all convolutional layers in the                   
generator and discriminator employ a 3×3 kernel (32). 

 
Model implementation 

The training of the ResNet and GAN models was 
performed using 86 pairs of brain MR and CT images 
as the input/output respectively as part of a six-fold 
cross-validation scheme. To this end, these models 
were implemented in the NiftyNet platform (version 
0.6.0, King’s College Londond, UK) which is a publicly 
available pipeline for the realization of deep learning 
models. NiftyNet is built on TensorFlow which               
consists of common architectures and networks used 
for a deep learning approach which can be easily  
retrieved and optimized for different tasks. The              
application of the NiftyNet platform includes                
segmentation, regression, and image synthesis (33). 

The training of the models was carried in a               
2-dimensional setting wherein each pair of MR and 
CT trans-axial slices were considered to be a training 
sample. The following training parameters were set 
for both the ResNet and GAN models: batch size=30, 
sample per volume=2, learning rate =0.003-0.001, 
decay = 0.0001, optimizer=Adam, and loss function 
=L2.   

During the training of the models, 5% of the  
training samples were dedicated to the evaluation of 
the models within the training to verify the risk of 
overfitting. The evaluation and training losses 
(errors) exhibited insignificant differences for both 
the ResNet and GAN models which show that there is 
no risk of overfitting. The training of the ResNet was 
completed in 15 epochs as the training loss reached 
its plateau while the training of the GAN model took 
22 epochs to reach its optimal point.  

 
Evaluation strategy 

To evaluate the performance of the ResNet and 
GAN models, the resulting synthetic CT images were 
compared to the ground-truth CT images. In this          
regard, all CT images were segmented into major 
tissue types, including air, soft tissue, cortical bone, 
and total bone. The intensity thresholds of -450 HU, 
150 HU, and 400 HU were applied for the                  
segmentation of air, total bone, and cortical bone  
respectively. Voxels within the range of -450 to 150 
HU were considered to be the soft-tissue mask. The 
assessment of the major anatomical structures       

extracted by the ResNet and GAN models was                
conducted using a dice similarity coefficient (equation 
 1) (15), relative volume difference (RVD) (equation 2), 
Jaccard coefficient (equation 3) (34) and sensitivity (S) 
(equation 4) over both the entire head and segmented 
regions: 

 

   (1) 
 

 

       (2) 
 

 

          (3) 
 

 

            (4) 
 

 

Where Ar and AS represent the intensities of the 
volume of interests in the reference CT images and 
synthetic CT images. Moreover, by considering the 
voxels within the above-mentioned regions, the mean 
error (ME) (equation 5), mean absolute error (MAE) 
(equation 6), root mean square error (RMSE) 
(equation 7), and relative error (RE) (equation 8) 
metrics were computed in respect of the reference CT 
images. By assuming dA(i)=(As (i)-Ar (i)) Wherein As 
(i)  and Ar (i)  stand for the i-th voxel intensity in the 
sCT and reference CT images, the formulae would be: 

 
     (5) 
 

 
              (6) 
 
 
             (7) 
 

 

          (8) 
 

Where N indicates the number of voxels in the 
segmented region.  Additionally, for the entire head, 
as a single volume of interest, peak signal-to-noise-
ratio (PSNR) (equation 9) and structural similarity 
index (SSIM), (equation 10) quantifies the image  
quality that was calculated using the following             
equations:  

 

        (9) 
 

 
      (10) 
 

In Eq.9,I denotes the maximum intensity value of 
the reference CT or synthetic CT images, and MSE 
denotes the mean square error. In Eq. 10, μr and μs  
are the mean intensity value, and δr and δs are the 
variance of the two corresponding CT images.             
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Parameters K1=(k1I)2  and K2=(k2I)2 with the             
constants of k1=0.01 and k2=0.02  were defined to 
stabilize the division with small denominators. 

 
 

RESULTS  
 

The training and evaluation of the GAN and                
ResNet models was carried out using a six-fold             
cross-validation scheme, thus the results reported in 
this section were calculated over the entire patient 
population. 

Figure 4 shows the cross-sectional views of the 
generated synthetic CT images along with the                
corresponding MR and reference CT images. The  
visual investigation revealed that the sCT images  
generated by the ResNet model are less noisy and 
have a higher similarity to the real CT. Furthermore, 
the ResNet model outperforms the GAN model,               
leading to more accurate bone and air delineation. 

Table 1 summarizes the mean and standard             
deviations of the ME, MSE, RMSE, RE, RVD, Dice, JC, 
Sensitivity, SSIM, and PSNR metrics computed over 
the sCT images resulting from the ResNet and GAN 
methods compared to the ground truth CT images for 
86 subjects. The parameters were calculated within 
the air cavities, soft tissue, cortical bone, and total 
bone regions, as well as the entire head. On average, 
ME, MAE, and RMSE exhibited smaller errors for 
most parts of the head region through the ResNet 

method. This observation is in agreement with the CT 
value bias reflected in the RE and RVD parameters. 
Furthermore, both approaches offered comparable 
values for the Dice, JC, Sensitivity, SSIM, and PSNR 
metrics. Altogether, it can be observed that the              
ResNet method exhibited slightly superior accuracy 
over the GAN method. The boxplots of the                    
quantitative metrics comparing the performance of 
the two methods by considering the real CT images 
as a reference, have been presented in figure 5. 

Figure 6 represents the axial views of the sCT and 
ground truth CT images together with the                     
corresponding binary masks of soft tissue, total bone, 
cortical bone, and air cavities. 

The quantitative accuracy of the CT value                     
estimation using the two proposed methods was  
further assessed by the calculation of the Hounsfield 
unit differences and the relative error rate between 
the real CT and sCT images. It is evident from the  
results shown in figure 7 that both approaches led to 
a comparable bias. 

In addition to the region-wise analysis, a joint  
histogram analysis was conducted to display the 
voxel-wise correlation between the reference and 
estimated CT values. Figure 8 illustrates that the CT 
images generated by the GAN and ResNet methods 
are highly correlated with the reference CT images. 
However, the correlation coefficient is slightly higher 
for ResNet (R2=0.98) than GAN (R2=0.97). 
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Figure 3. The architecture of the GAN model. 

Figure 4. Qualitative comparison of sCT and reference CT 
images in three axial, sagittal, and coronal views: A) MR            

image, B) Reference CT, C) sCT generated by ResNet model D) 
sCT generated by GAN model. 
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Res-Net method air Soft tissue Cortical bone Total Bone Brain total 
ME(HU) 38.8±234.8 7.1±6.2 -26.4±150.4 -19.5±111.6 -1.3±38.7 

MAE(HU) 486.7±107.6 40.5±6.7 375.0±67.1 292.6±48.9 114.1±27.5 
RMSE(HU) 153.9±9.6 57.1±5.2 157.4±7.0 156.0±6.0 91.5±5.8 

RE(%) -0.43±0.09 -0.20±0.07 -0.11±0.17 -0.02±0.18 -0.09±0.16 
RVD(%) 3.65±57.77 0.62±3.24 -2.08±11.32 -1.85±8.25 -0.02±0.02 

Dice 0.58±0.12 0.94±0.02 0.82±0.04 0.85±0.04 1.00±.0 
JC 0.41±0.11 0.89±0.03 0.70±0.05 0.74±0.05 1.00±.0 

Sensitivity 0.63±0.19 0.94±0.02 0.84±0.06 0.86±0.05 1.00±.0 
SSIM - - - - 0.95±0.04 
PSNR - - - - 28.65±1.59 

GAN method air Soft tissue Cortical bone Total bone Brain total 
ME(HU) -213.2±125.0 -12.1±29.2 -5.9±159.9 34.0±115.6 -5.4±57.5 

MAE(HU) 501.0±60.1 67.2±18.5 443.6±94.7 323.1±57.4 161.3±38.1 
RMSE(HU) 161.2±6.3 77.6±14.0 163.4±7.0 162.8±5.9 111.5±11.8 

RE(%) -0.26±0.14 -0.32±0.37 -0.17±0.15 -0.01±0.18 0.18±0.47 
RVD(%) 59.38±34.26 -12.21±11.32 6.40±16.37 35.02±41.57 -0.10±0.26 

Dice 0.53±0.07 0.87±0.07 0.75±0.07 0.73±0.10 1.00±.0 
JC 0.37±0.06 0.78±0.10 0.61±0.08 0.58±0.12 1.00±.0 

Sensitivity 0.44±0.08 0.94±0.02 0.74±0.09 0.66±0.14 1.00±.0 
SSIM - - - - 0.94±0.05 
PSNR - - - - 26.94±1.53 

Table 1. Statistics of quantitative comparison between reference CTs and synthetic CTs generated by GAN and ResNet methods 
in terms of ME, MAE, RMSE, RE, RVD, Dice, JC, Sensitivity, SSIM, and PSNR. Results are averaged across 86 patients and reported in 

the form of average ± standard deviation. 

Figure 5. Boxplots of A) ME, B) MAE, C) RMSE, D) Dice, E) PSNR, F) SSIM and G) RE  
metrics between GAN and ResNet methods. 

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
20

.1
.1

9 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

rr
.c

om
 o

n 
20

25
-0

8-
23

 ]
 

                             6 / 10

http://dx.doi.org/10.52547/ijrr.20.1.19
http://ijrr.com/article-1-4082-en.html


Saeed and Almalki / Assessment of radiation dose  127 

Figure 6. Representative slices of sCT generated by ResNet and GAN methods as well as ground 
truth CT images along with segmented soft tissue, total bone, cortical bone and air cavities A) MRI, 

B) Reference CT, C) Reference soft tissue mask, D) Reference total bone mask, E) Reference  
cortical bone mask, F) Reference air mask, G) ResNet CT, H) ResNet soft tissue mask, I) ResNet 

total bone mask, J) ResNet cortical bone mask, K) ResNet  air mask, L) GAN CT, M) GAN soft tissue 
mask, N) GAN total bone mask, O) GAN cortical bone mak, P) GAN air mask. 

Figure 8. Joint histograms analysis of the sCT generated by the A) GAN & B) ResNet methods with respect to the reference CT 
over 86 subjects. 

Figure 7. A) The difference of Hounsfield Unit, and B) the percentage of Relative Error between the reference CT and synthetic CT 
images resulted from GAN and ResNet methods. 
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DISCUSSION 

 
MR-guided synthetic CT generation is an essential 

step in MR-only radiation planning and PET                  
attenuation correction in relation to hybrid PET/MR 
scanners. Recent studies have demonstrated the 
promising performance of deep learning approaches 
to synthesize a "pseudo-CT" from MR-only images for 
the task of attenuation correction (35-38) as well as MR
-only radiation planning (19, 39). These approaches 
have outperformed conventional synthetic CT            
generation approaches such as the atlas- and                 
segmentation-based methods (14, 19, 40). In this light, a 
comparison of deep learning-based methods for  
challenging tasks (such as MR-guided PET                    
attenuation correction and radiation dosimetry) is of 
particular interest in order to establish a robust 
framework with minimal errors. In this work, two 
state-of-the-art deep learning algorithms, namely the 
ResNet and GAN models, were evaluated for the             
estimation of the synthetic CT images from                        
T1-weighted MRI images in relation to brain imaging. 
Their quantitative performance was assessed against 
the reference CT images. Though there are a number 
of deep learning architectures, the Resnet and GAN 
models are regarded as the most powerful, popular, 
and effective models owing to their exclusive                 
properties/characteristics (41). The GAN architecture 
benefits from two generator and discriminator cores 
which enable the extraordinary capacity to capture/
model the underlying structures/patterns in order to 
generate synthetic images. On the other hand, the 
Resnet architecture relies on a simpler structure. 
However, the entire image processing in the Resnet 
model is performed based on the full spatial                  
resolution of the input image at the different layers 
which allows this model to estimate/predict the            
desirable outputs with outstanding accuracy and  
detail.  

The GAN model used in this work has a residual 
architecture in the generator component which is 
similar to the model developed by Emami et al. (18) 
with a residual block for the generator and fully           
connected convolutional neural network (CNN) for 
the discriminator component. The GAN model                 
proposed by Emami et al. (18) led to 89.3 ± 10.3 
Hounsfield units (HU) for the mean absolute error 
(MAE) over the entire field of view for 15 brain scans, 
thus exhibiting superior performance over the CNN 
model along with an MAE of 102.4 ± 11.1 HU,           
although the overall MAE of GAN and ResNet models 
in this study across the entire brain regions for 86 
patients were 161.3±38.1 HU and 114.1±27.5 HU 
respectively. These results show a higher error rate 
compared to those obtained by Han et al. (39) 
(84.8±17.3 HU), Emami et al. (18) (89.30±10.25 HU), 
and Arabi et al. (25) (101 ± 40 HU). However, a                 
comparison of these models based on the MAE would 
not be fair/reasonable as different patient               

populations were used in these studies. Han et al. (39) 
employed a CNN model trained by 18 subjects using a 
six-fold cross-validation procedure, Emami et al. (18) 
validated their model using a five-fold cross-
validation framework for 15 patients and Arabi et al. 
(25) used 40 patients under a two-fold cross-
validation scheme. 

The other model assessed in this study was the 
ResNet model that benefits from dilated                            
convolutional kernels that allow for the high-
resolution processing of the input images at different 
layers or feature levels without increasing the               
complexity of the model. This architecture would be 
very effective for the regression processes wherein 
inter-modality image conversion is required with a 
high spatial resolution. Altogether, the ResNet model 
exhibited slightly superior performance over the GAN 
model. However, the GAN model could be                         
implemented in a variety of architectures such as 
CycleGAN (42) which is able to show excellent                   
performance in the specific tasks such as                      
unsupervised learning. The ResNet model, owing to 
its high-resolution processing of the input images, 
might be a better option for end-to-end supervised 
image translation wherein specific anatomical                
features/structures are mapped/reflected in the              
resulting synthetic images. The high-resolution and 
end-to-end connections of the input and output               
images in the ResNet model allowed for effective  
synthetic CT generation from the T1 weighted MR 
images.  

One of the limitations of this study is that it only 
focused on brain imaging. However, pelvis and thorax 
imaging are important as well in RT planning and 
PET AC. Synthetic CT generation from MR thorax  
images is highly challenging due to the presence of 
the lung and high heterogeneity of the tissues (8). 
Moreover, a comparison with other popular deep 
learning models such as U-net (providing a baseline 
to compare the other approaches) could add to the 
value of this work. Therefore, a comparison of                
different deep learning approaches should also be 
conducted in the thorax and pelvic regions to               
determine the most accurate and robust deep                
learning-based synthetic CT generation algorithm. 
Moreover, this study lacks an evaluation of the             
resulting synthetic CT images in terms of radiation 
dosimetry wherein the absorbed dose in the               
synthetic CT images should be compared to the              
absorbed dose in the reference CT images to quantify 
the expected errors in MR-only RT planning. 

 
 

CONCLUSION  
 

The present study evaluated and compared two 
state-of-the-art and popular deep learning models 
frequently used in research settings for the                    
challenging task of synthetic CT generation from MR 
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images. It was demonstrated that the ResNet model 
(versus the GAN model) is able to generate accurate 
synthetic brain CTs from MR images for the task of 
MRI-only radiation therapy and attenuation                    
correction in integrated PET/MRI scanners. However, 
the performance of these methods should also be 
evaluated in other body regions such as the pelvis 
and thorax. 
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