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Radiation dose for external exposure to gamma-ray using 
artificial neural network and MC simulation 

INTRODUCTION 

Natural radioactivity is still the major source of 
radiation exposure that comprises cosmic radiation 
and the radiation arising from the primordial                   
radioactive elements in the ground. To estimate the 
absorbed dose rates received at 1 m above the soil 
due to photon emitters derive from soil (1-2) (the            
natural radioactive series of 238U, 232Th and 40K) two 
basic methods have been followed. The first one            
calculates the gamma-ray field by solving the               
Boltzmann transport equation (3, 4). The second one 
uses Monte Carlo techniques in order to obtain              
information regarding the energy and angular                
characteristics of the radiation field in air and to            
calculate the absorbed dose rate in air. In the                 
literature, several soil-detector geometries (5–8) have 
been proposed to achieve better accuracy for the    
conversion factor calculation in Monte Carlo                      
simulation.  

Saito et al. (5) assumed the ground and the air as 
infinite smooth planes contacting each other. The 
ground was taken up to 300m down and the air was 
taken up to 200m height. On the other hand, Likar et 
al. (6) generated the primary photons from a box as 
large as 2km. The absorbed dose rate was calculated 
in a box of air as large as 2km. For Clouvas et al. (7), 
radionuclides was distributed in a cylindrical of 40m 
radius and 1m depth. The dose was calculated at 1m 
above the ground. To calculate the dose rate he used 

two virtual detectors, a point detector and a sphere 
detector. Askri et al. (8) have proposed a theoretical 
model that optimizes the soil geometry implemented 
in GEANT4. The detector, used by Askri et al., is a disc 
detector of radius 2m placed 1m above the soil               
level. The optimized geometry used by (8) is not easy 
to implement in GEANT4 and the disc detector used 
in this work hasn’t the adequate geometry as we 
demonstrate.  

The literature shows the CPU time of MC             
simulation is a limitation that has to be resolved. In 
fact, by choosing huge geometry for the soil a               
significant part of the generated photons will be 
tracked even though it will not contribute to the             
detected radiation. Thus, simulating photons which 
do not contribute to the detected radiation leads to 
an enormous loss of CPU time. On the other hand, 
choosing an arbitrary small geometry size for the soil 
eliminates photons that will actually contribute to the 
absorbed dose at 1m above the soil. Askri (8) solved 
this major shortcoming by determining optimized 
source geometry based on mathematical model and 
on physical assumptions that was later implanted in 
Monte Carlo simulation. In  this  work,  we  propose  a  
combined  method  based  on  MC  simulation  and an  
Artificial  Neural  Network  in  order  to  calculate  the  
dose  in  record  time maintaining its efficiency. Our 
method presents an alternative convenient approach 
that simulates the absorbed dose rate and declines 
the necessity of determining the optimized source 
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geometry before the simulation.  
 
 

MATERIAL AND METHODS 
 

In this work, we present a new approach in which 
an ANN is combined to MC simulation to define the 
soil part that its emitted radiation has a high                  
probability to reach the detector.  Indeed, in GEANT4, 
the PrimaryGeneratorAction class generates primary 
photons randomly in the source area and the code 
tracks it until it disappears. Using a trained ANN, the 
generation and the tracking of photons will be               
controlled. The ANN gives a prediction (P(x,y,z)) for 
the generated photon position (x,y,z) to reach the 
detector. To reduce the computation time and on the 
basis of applying trained neural networks, only             
photons having high probability to escape the soil 
and reach the detector are generated and tracked by 
GEANT4. Photon with low probability is killed and 
another photon is generated. 

 

Monte Carlo simulation  
Monte Carlo simulation was done using the free 

CERN code GEANT4 (9). GEANT4 simulates                      
interactions of particles with matter. The code uses 
C++ language and comes with basic concepts of the 
user’s initialization and action classes.  

The geometry (air, soil and detector) is                      
incorporated in GEANT4 using G4DetectorConstruc-
tion class. Primary particles are implemented in 
G4Primary-Particle class. Where each primary              
particle is described by the coordinates of its position 
(x, y, z), by its momentum direction and by its energy. 
In MC simulation all primary particles created in the 
source are tracked until the particle loses all its              
kinetic energy, disappears due to an interaction or 
reaches the boundary of the simulation volume.  

Three sets of photons are generated by GEANT4. 
Primary photon positions (x, y, z) are saved in a root 
file. The first set of photons is used for the training of 
the ANN and the second one is used for ANN                 
architecture optimization. The third set of photons is 
used for accuracy estimation and for unscattered flux 
and dose rate conversion coefficients calculation. 

 

Artificial neural network description 
ANN is nonlinear computational algorithms               

inspired from biological neural systems. ANNs have 
been applied in the last years to a wide range in  
physics (11), electronics, economics (12)... An ANN is 
composed of an input and output node layers                 
connected through a number of hidden layers in               
between. The input layer receives the input signals xj. 
Then, the inputs are normalized and weighted by 

 Each node is occupied by a nonlinear                       
information-processing unit called neuron. The nodes 
in each layer are connected with all neurons of the 

neighboring layer(s) and propagate information with 
a weight specifying the strength of the inter-neuron 
couplings (13). The input signal connected to a neuron, 
is multiplied by a synaptic weight. The sum of the 
weighted input signals is used as a parameter of the 
activation function. This function, usually a sigmoid, 
allows limiting the output amplitude of the neuron. In 
mathematical terms, the artificial neuron calculation 
is described by equations (1) and (2): 

 
                  (1) 
 

 

)        (2) 
 

where wkj are the connections weights and bk is a 
bias and φ(ν) = 1/(1 + exp( ν)) for this work. 

To obtain the desired output from the network, 
the neurons in the input layer receive input data,  
normalize them and propagate them successively to 
the hidden layers and then to the nodes in the output 
layer. The adjustment algorithm is referred as               
Learning or Training considering the comparison 
between the output of the network and the desired 
target corresponding to the training sample. One of 
the methods widely used for its performance is called 
“learning by epoch”. It consists first in the summation 
of information for the whole pattern and then                
updates the weights. Each update minimizes the 
summed cross-entropy cost function error. The               
performance of an ANN is given by the accuracy of 
prediction measured by this error and the                       
convergence of the learning process. As an output of 
the ANN, we have two curves of errors. The first one 
represents the error calculated for the training               
sample called training error and the second                   
corresponds on the error calculated to another             
independent test sample not used in the training, 
called ”generalization error”. The purpose of the 
learning process is to obtain a low generalization  
error characterizing the performance of the ANN to 
model new data not used in the training.  

This work is performed using a layered ANN type 
under supervised training scheme that contains a 
number of hidden units. This type of the ANN models 
showed a good agreement and has been cited as            
reliable universal approximators. ANN code has the 
ability to include the needed libraries for physics data 
analysis. And it is running on ROOT (14), a CERN free 
data analysis toolkit based on C++. 

 
Hardware platform 

The hardware platform used to run the GEANT4 
code version 10.1 and ROOT framework version 
5.34.0.0 is a free Scientific Linux (SL4.5) installed on a 
VMWare workstation machine with 4Gb RAM and a 
2.5GHz CPU. 
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RESULTS  
 

Adequate parameters of the detector and soil 
In the literature, several soil geometries and sizes 

(5–8) have been proposed to achieve better accuracy 
for the calculation of the conversion factor. Taking 
into account symmetry considerations, the adequate 
soil geometry for the simulation of the external               
exposure to photons is found to be cylinder. Thus, the 
soil geometry was implanted as cylindrical shape in 
Geant4 for the rest of this work.  The dimensions of 
this cylindrical source need a careful investigation in 
order to define the optimum emission photon               
geometry size. For that purpose the unscattered flux 
(γcm−2/Bqkg−1) was calculated using GEANT4 code 
for 3 different photon energies (E = 0.2, 1, 3M eV ) for 
soil radii varying from 3m to 3000m and soil depths 
from 1cm to 10m. We would like to mention that the 
photon flux is composed by the unscattered flux (due 
to photons reaching the detector without any                 
interaction with the soil and the air above) and the 
scattered  flux  (due  to  photons  reaching  the                
detector  after  scattering  in  air and mainly in soil). 
The study in this section is done using the                    
unscattered photons because it contributes to               
accurate results from a statistical point of view.  

Figure 1 presents the normalized unscattered flux 
as function of soil depth and figure 2 as function of 
the soil radius. The normalized unscattered flux is 
calculated by dividing the unscattered flux for each 
depth (radius) by the unscattered flux for the depth z 
= 10m (radius r = 3000m). To not discard photons, 
the choice of the soil geometry size should depend on 
the energy of the emitted photons. 

Saito, Likar and Clauvas, (5–7) have calculated the 
photon flux energy at 1m above the soil by different 
detector geometries. To study the effect of the                  
detector geometry on the unscattered flux, we               
generate photons with primary energy of 1.5MeV 
randomly from the soil and we calculate the                
unscattered flux reaching two different detector           
geometries placed at 1m above soil: the first one is a 

sphere (7) of radius of 1m and the second is a disc (8) 
of the same radius. Figure 3 illustrates the results of 
the comparison between the normalized unscattered 
flux for the two geometries as function of the the             
primary emitted photon position. As seen in this            
figure, primary photons generated with a large              
distance from the detector have a low  probability  to 
reach the disc detector due to the small solid angle.  
The spherical shape with a high symmetry was            
selected in the remainder of this work.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Training of the artificial neural network 

In the training step the position (x, y, z) of the 
emitted photon sources was generated in the                
PrimaryGeneratorAction class and saved in a root file. 
A first set containing 10000 position values of          
photons reached the detector and 10000 position 
values (x, y, z) of photon sources not reached the  
detector is used for the training of the ANN. Based on 
(x, y, z) as inputs, the trained ANN predicts the            
probability P(x; y; z) that a photon reaches the             
detector. The ANN meets the validation requirements 
when it allows to reproduce a probability close or 
equal to 1 for photons reached the detector and close 
or equal to 0 for photons not reached the detector. 

The architecture of the ANN (the number of layers 
and of nodes in each layer) is a crucial point in the 
construction of an Artificial Neural Network. The        
input layer, of our ANN, contains 3 neurons                 
corresponding to coordinate (x, y, z) of the photon 
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Figure 1. The normalized unscattered flux for different soil 
depths. 

Figure 2. The normalized unscattered flux for different soil 
radii. 

Figure 3.The unscattered flux as function of the position r of 
the primary emitted photon. 
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sources. The output layer of the ANN contains a             
single neuron assigned to the probability P(x, y, z) 
that the emitted photon reaches the detector. 

To choose the appropriate number of hidden             
layers, different architectures have been tested (two, 
three and four hidden layers with various numbers of 
neurons in each hidden layer). The ANN architecture 
with two hidden layers with 6 and 4 neurons have 
validated the requirements. Training was performed 
for different architectures using as input to the ANN, 
the (x, y, z) positions of the first set of photons. A   
second set containing 10000 position values of                
photons reached the detector and 10000 (x, y, z)  
position values of photon sources not reached the 
detector is used to test the performance of the ANN. 
The position (x, y, z) for each photon is introduced to 
the trained Artificial Neural Network as input and 
then the ANN predict the probability for this photon 
to reach the detector. For each architecture the               
root-mean-square error (RMSE) is calculated using 
equation (3).  

 
     (3) 
 

where N is the photons number, Pi is the output of 
the ANN (the probability that the emitted photon (i) 
reaches the detector) and     expected probability              
(Pi = 1 for photons that have reached the detector 
and 0 for photons that did not reach the detector). 

Figure 4 shows  a  histogram  of  the  logarithmic  
distribution  of  the  ANN  output P(x,y,z) with  two  
hidden  layers  (6  and  4  neurons)  predicted for the 
second set of photons. As we see, there is a good              
separation between calculated probability by the 
ANN for photons reached the detector and photons 
not reached the detector. This separation                         
authenticates the performance of ANN which allow 
us to adopt this technique.  

ANN-MC: A combined method for dose rate                     
conversion factor calculation 

The trained Artificial Neural Network is combined 
with MC simulation to select and track only photons 

with high probability to reach the detector. A new 
class for the trained ANN is added to GEANT4. The 
position (x, y, z) of primary photon sources is                
randomly generated in the PrimaryGeneratorAction 
class. This position is used as input to the ANN class.  
The probability to reach the detector is then                   
calculated using the trained ANN. If the probability is 
greater than a selected threshold, the generated              
photon is tracked, else, we return to the                               
PrimaryGeneratorAction class to choose another (x, y, 
z) position. Figure 5 shows the probability to reach 
the detector calculated by the ANN for 108 photons 
generated in the PrimaryGeneratorAction class.  

 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) shows the position z as function of x 
for photon sources with a probability higher than 
three selected thresholds (Th1= 0.1, Th2= 0.5, Th3 
=0.9), the number of selected photons decreases with 
the threshold. 

Figure 5. (b) Shows the position z as function of x 
for Th2 = 0.5. We draw in the same figure the surface 
limiting the optimized volume (red line), developed 
by Askri et al. (8), and defined by: 

 

 
For primary photon energies above 100 keV,  = 

µair/µsoil ≈ 10−3. The maximum depth reached by            
photons for Th2 = 0.5 is d = 1.3m.  

 
 
 
 
 
 
 
 
 
 
 
 

202 Int. J. Radiat. Res., Vol. 20 No. 1, January 2022 

Figure 4. Logarithmic distribution of the output of the ANN. 
Events corresponding to photons reached the detector is  

presented in yellow. 

Figure 5. The output of the ANN calculated for photons          
generated in thePrimaryGeneratorAction class. 

Figure 6. Top: The coordinate z as function of x for photons 
with a probability to reach the detector higher than three 

selected thresholds (Th1 = 0.1 (black), Th2 = 0.5 (red), Th3 = 0.9 
(blue)). 
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To 

check our method and to choose the adequate  
threshold, two tests are performed. In the first one, 
we calculate the unscattered flux (ϕ) for 108 primary 
pho- tons at (3 M eV) generated randomly in a soil 
cylinder (r = 218m; d = 2m). All generated photons 
are tracked by GEANT4 from the starting point to the 
stopping point. In the second one, we generate the 
same number of the primary photons with the same 
energy and the same geometry. Photons are sent to 
the trained ANN to calculate the probability to reach 
the detector. Only photons with a probability higher 
than a fixed threshold (from 0.1 to 0.9 by a step of 
0.2) are tracked by GEANT4. We note ϕTh, the              
unscattered flux calculated for each threshold. Table 
1 shows the relative error ∆ϕ for five thresholds. ∆ϕ 
is calculated using formula (5): 

 
           (5)  
 

 
 
 
 
 
 

Figure 8 shows analogy between the                     
unscattered flux values calculated using ANN-MC 
and the standard values published in the literature.  

 
 

DISCUSSION    
 
The results of the size source choice showed that 

the dimensions of soil should not be the same for all 
energies. However, previous studies (5,6,7,8) used the 
same soil size for all energies which increase the             
statistical error of the work. For instance, the radius 
and depth (r; d) of the cylinder soil, corresponding to 
a normalized unscattered flux= 99.9%, are (r = 280m; 
d = 2m) for 3 MeV energy and (r = 217m; d = 1.15m) 
for 1MeV energy and (r = 178m; d = 0.61m) for 0.2 
MeV energy. Generally speaking our results should be 
adopted in Monte Carlo studies for soil parameters 
source in order to insure the accuracy of the results. 
Accordingly, in the remainder of this work, the              
simulation will be conducted with the proper radius 
and depth associated to every energy. The choice of 
the detector shape is another parameter that has to 
be studied. A comparison between disc detector and 
a sphere detector was made. The outcome has 
showed that primary photons generated with a large 
distance from the detector have a low probability to 
reach the disc detector which pinpoint that the choice 
of detector is another reason of the statistical error 
between different results.  

For the rest of the work, we present a new               
approach in which an ANN is combined to MC              
simulation to determine photons that have significant 
probability to reach the detector. The result of the 
preliminary study that investigate the performance 
of trained ANN showed a good separation between 
photons that reached the detector and photons that 
did not which is a good indication that ANN gives a 
good prediction for the generated photon position 
(x,y,z).  

Our method  based  on  MC  simulation and             
Artificial  Neural  Network has the advantage to            
calculate  the  dose  in  record  time maintaining its 
efficiency along with abandoning the approach of 
determining the optimized source geometry before 
the simulation like in Askri work[8]. Indeed, Askri 
have made analytical calculation to define the volume 
that has significant contribution in the simulation, 
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Figure 7. The position z as function of x for Th2 = 0.5 limited 
by the optimized volume proposed by Askri et al. 

Threshold  
0.1 0.9 
0.3 1.4 
0.5 2.6 
0.7 3.2 
0.9 4.5 

Table 1. Presents the relative error ∆ϕ for different threshold. 

Figure 8. The unscattered flux (γcm−2s−1/Bqkg−1) obtained  
using ANN-MC method compared to previous works.             

Statistical discrepancy does not exceed 1%. 

Figure 9. Dose rate conversion coefficients (nGyh−1/Bqkg−1) 
calculated with ANN-MC method, compared to previous 

works. 
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and photons were only generated in that volume. By 
drawing the position z as function of x of photons 
ANN chosen to track, we have found the same               
optimized shape proposed by Askri. This result is 
considered an affirmation that ANN prediction is  
correct.  

A study of relative error ∆ϕ is necessary to point 
out the value of our work.  The unscattered flux              
values calculated using ANN-MC and the standard 
values published in the literature showed analogy 
and that proves a good performance of our method. 

Comparison is performed against values obtained 
by Askri using GEANT4 and Clauvas using GEANT3 
and MCNP (8). The comparison is also done with the 
theoretical calculation of Beck and the theoretical 
calculation of Clouvas using MathCad. The agreement 
with Askri (GEANT4) and Clauvas (MCNP)                   
calculations is rather good with a discrepancy less 
than 1%. Values of dose rate conversion coefficient 
show a good agreement within the statistical error 
with the benefit of a significant time gaining using 
our method (8). We mention for the calculation of the 
unscattered flux and the dose rate conversion factor, 
for a threshold of 0.1 corresponds ≈ 97% of gain in 
computation time. 

 
 

CONCLUSION 
 

We developed a new method based on ANN and 
MC simulation to calculate the absorbed dose rate in 
air. An ANN was trained and successfully                         
implemented in GEANT4 system. ANN was used to 
calculate the probability for each generated primary 
photon, to reach the detector. Only photons with  
significant probability to reach the detector are 
tracked by GEANT4. The dose rate conversion                
coefficients were calculated for different energies 
and a good agreement with previous works was               
obtained. Due to reduction of the number of tracked 
photons in MC simulation, substantial gain in                
computation time was obtained (≈ 92%). The new 
method has solved the efficiency problem. It is         
important to mention that this method can be adopt-
ed by other problem of dose calculation. 
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