
International Journal of Radiation Research, July 2022 Volume 20, No 3 

Optimizing the neural network training algorithm in 
predicting kerma in mammography 

INTRODUCTION 

According to the reports of the National Cancer 
Institute, following lung cancer, breast cancer is 
known as the second deadliest cancer, and about 
43,000 women annually die due to breast cancer in 
the United States (1). The World Health Organization 
has also reported that about 5000 women died due to 
breast cancer in Iran in 2020 (2). 

Mammography is known as the most effective 
diagnostic method for breast cancer at an early stage; 
therefore, it is used for early detection of breast            
cancer (3). One of the limitations of mammography is 
the low contrast between pathological and normal 
tissues. This limitation makes it possible to use               
low-energy photons in mammography, which can be 
easily absorbed in the breast tissue and then increase 
the received dose by the person under the test (4). 
However, in mammography screening, asymptomatic 
women are exposed to radiation (5); therefore, in each 
case, the radiation dose must be kept at the lowest 
possible level while maintaining suitable image              
quality. In addition, there is always an accidental risk 
of developing breast cancer in mammography due to 
exposure to breast tissue. In this regard, the            
evaluation of the patient's dose during mamm 

ography is important (6). It is generally accepted that 
glandular tissue is the most sensitive tissue in the 
breast to radiation. Thus, the mean glandular dose 
(MGD) is suggested as the most appropriate                         
dosimetry, in order to predict the risk of                         
radiation-induced cancer (7,8), which is necessary to 
achieve ESAK. 

One of the common ways used to calculate the 
MGD is Monte Carlo simulation. Using this method, 
the mammography machine is simulated with its  
details, which requires performing a separate                  
simulation for each center and device due to the              
differences in device characteristics, which is                 
time-consuming and complex (9). Moreover, there is 
an error due to the differences in the function of           
devices with their nominal characteristics, depending 
on the lifetime of each device (9,10). In a study                  
conducted by Suleiman using Bland-Altman analysis 
and regression to investigate compatibility and              
correlation between organ dose and calculated dose, 
a significant bias was observed between these two 
doses (11). In another study, the mean MGD error was 
calculated as 3.80% by Dance parameters compared 
to the dose measured by dosimeter (5). 

Using another method, it is needed to measure 
ESAK of breast tissue and use the conversion factors 

M. Nabipour1, M.R. Deevband1*, A. Asgharzadeh Alvar1, N. Soleimani2 
 

1Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran 

2School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran 

ABSTRACT 

Background: In regard to the enhanced use of mammography screening tests for 
screening breast cancer, some concerns on the enhancement of the patient's 
absorbed dose have increased as well. Therefore, the assessment of the patient's dose 
before mammography is very important, and being aware of the dose level by its 
estimation can be helpful before radiation. Materials and Methods: To this end, an 
artificial neural network (ANN) was used in this study to estimate the entrance surface 
air kerma (ESAK). A phantom with similar characteristics of the breast tissue was also 
used to collect the required data and the network was trained using some measurable 
parameters. To conduct the current research, multilayer perceptron (MLP) neural 
network architecture with training algorithms of LMBP, SCGBP, Rprop, BFGS, and 
GDBP, as well as radial basis function (RBF) neural network were used. Results: The 
results show that the neural network with BFGS training algorithm and 38 hidden layer 
neurons has the best performance with 7.40% root mean square error (RMSE) and 
coefficient of determination (R2) was obtained as 0.91. Conclusion: According to the 
results of this study, there is a good correlation between the estimated network 
output and the measured values of the ESAK. The present method will remove the 
limitations and costs associated with the preparation process of dosimeter 
instruments.  
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calculated by Dance, which would be time-consuming 
and difficult when processing patients. Accordingly, 
in this method, the breast tissue dosimetry result is 
also required, but due to the limitations in dosimetry 
instruments, measurement-based methods cannot be 
efficient enough for estimating the dose (12,13). 

The neural network has a special ability in finding 
nonlinear relationships between inputs and outputs 
variables. As well, it does not require any specific 
function to express the relationship between input 
and output data. Nowadays, researchers have shown 
that the use of machine-learning techniques with 
their diagnostic function is better than the use of  
linear regression and logistics that can be effective on 
having a faster and low-cost diagnosis in all                       
treatment sections (14). In a study performed by  
Massera, deep learning was proposed to estimate 
volume glandular fraction based on mammographic 
images, which were converted to glandularity values 
for MGD calculations. In this study, MLP neural              
network architecture was also used and network  
prediction by R² was compared with the underlying 
criterion (15). 

The present study aimed to use the optimal neural 
network to estimate ESAK for predicting MGD, and to 
provide a pre-imaging dose prediction as a necessity. 
It is hoped that the proposed model eliminates the 
error between the absorption dose measured by the 
dosimeters and calculations using the Monte Carlo 
simulation method. 

 
 

MATERIALS AND METHODS 
 

Data collection 
The humanlike phantom with the trade name of 

Pro-DigiMAM Mark II (SN: M-DT-000152: POLAND) 
with breast tissue characteristics (including                   
glandularity of 50% and a thickness of 45 mm) that 
complies with the international standard IEC 61223-
3-2 was used for the production and collection of  
data. In the present study, for ESAK and half-value 
layer (HVL) measurement, a solid state dosimeter 
(RTI Electronics AB- Barracuda Cabinet BC1- 
11020059) was used, so the dosimeter was placed 
under the compressor plate of the mammography 
unit, next to the phantom. Of note, the ESAK and HVL 
values of 224 phantom dosimetry samples used in 
this research were collected from 32 mammography 
centers in Iran and some exposure parameters such 
as anode voltage, tube current, and anode/filter            
combinations were then recorded. 

 

ESAK definition 
According to Dance study (16), the MGD is defined 

as equation (1). 
 

MGD=ESAK.g.c.s     (1) 
 

666 

Where ESAK is the incident air kerma at the upper 
surface of the breast, which is measured without any 
backscatter. Accordingly, the conversion factors were 
calculated for various clinical spectra such as HVL, 
anode/filter combinations, the compressed breast 
thickness, and the rate of breast glandularity. As well, 
g stands for the incident air kerma to MGD                  
conversion factor, which is calculated by Dance and 
corresponds to a glandularity rate of 50%. Notably, 
Factor c is the correct coefficient of g for any                 
difference in breast composition from 50%                   
glandularity. The c-factors calculated by Dance were 
defined for glandularity rate between 0.1 and 100% 
for breast thickness of 2-11 cm and HVLs of 0.30-0.60 
mm Al. Finally, the factor s is the correct coefficient of 
factor g for the other x-rays spectrum, which changes 
in the anode/filter combinations (16). 

 

Data processing 

In the current work, MATLAB software was used 
for processing the obtained data and modeling a              
neural network. Afterward, the network was trained 
using data prepared from phantom dosimetry in 
mammography centers. The measurable variables, 
including tube current (mAs), anode voltage (Kvp), 
the thickness of HVL, the overall thickness of the             
filter, and anode/filter combinations were applied as 
inputs to the network, and ESAK was applied as the 
network output. Before the transmission of these  
variables to the neural network, it is necessary to pre
-process the data in order to facilitate the procedure 
of neural network training. Pre-processing the data 
includes some stages as encoding discrete inputs, 
management of outlier data, and data normalization. 
For this purpose, 11 outlier data were discarded and 
data normalization was then performed based on 
equation (2) which led the data to be placed between 
zero and one: 

 

    (2) 
 

Where xi is an original value, and xnormal  is the  
normalized value (17). Thereafter, these data were 
divided into three training data sets, consisting of 
70% of the total data, and in this regard, each                
validation and testing set consists of 15% of the total 
data. The schematic of neural network design for the 
prediction of ESAK is shown in figure 1. 
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Figure 1. Schematic of neural network design for the ESAK 
prediction with 5 inputs. 
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ANN architecture 
MLP neural network with a sigmoid transfer             

function in the hidden layer as well as a linear             
transfer function in the output layer is known as a 
comprehensive estimator (18) shown in figure 2. After 
the selection of the base structure of the network, it is 
necessary to determine the details of the MLP                
network architecture such as the number of layers 
and neurons, and the training algorithm. The                
standard process of selecting the number of layers is 
performed by beginning the training process with a 
network consisting of one hidden layer. It is                   
noteworthy that the use of more than two hidden 
layers in artificial neural networks is unconventional 
(17). The number of neurons in the output layer is 
equal to the target data vector, in such a way that our 
network with only one output (ESAK) had only one 
output layer. The standard process of determining 
the number of neurons is to begin the process of 
training neural network with a greater number of 
neurons, and after several stages of training and            
testing the network with some hidden neurons, the 
number of optimal neurons is finally selected based 
on the performance index (19). 

ANN training algorithms 

In regard to training the neural network, the 
weighting coefficients of the network changed in             
order to minimize the performance function like the 
mean squared error (MSE). In this research, the most 
important learning algorithms such as gradient            
descent backpropagation (GDBP), BFGS                            
quasi-Newton method, resilient backpropagation 
(Rprop), scaled conjugate gradient backpropagation 
(SCGBP), and Levenberg-Marquardt backpropagation 
(LMBP), based on backpropagation algorithm in the 
MLP network, which are the most widely used                
algorithms in function approximation problems, have 
been discussed (17). Additionally, RBF networks are 
widely used for the nonparametric estimation of  
multidimensional functions (20). Correspondingly, 
they have two layers, the hidden layer of which is a 
radial basis (such as Gaussian) function and the             
output layer is linear (14,18). Adjustable important  
parameters include the following three parameters: 
spread, which shows the variance of radial basis     
functions; goal, which is the MSE; and the maximum 
number of neural network neurons with the same 

number as radial basis functions (21). 
 

Data validation 
After the neural network training, it is necessary 

to demonstrate its efficiency. The performance of the 
models is mostly evaluated by a set of test data that 
are not used in the training of the network. In the 
present study, the applied indicators in the                     
evaluation of models were RMSE and R2 between the 
predicted and measured values. Moreover, RMSE  
value measures both the accuracy and validity of 
training and test data sets. The R2, which is the 
square of the correlation coefficient, is one of the 
most widely used statistics in the articles related to 
the neural network. In addition, the histogram of  
network errors was used to evaluate the network (18). 

 
 

RESULTS 
 

In the current research, by executing the program 
for the number of neurons from different hidden            
layers, the optimum number for GDBP was                   
determined to be between 5 and 11 neurons.                  
However, for other training algorithms, it was                 
between 32 and 38 neurons, and in higher numbers, 
regression was lower than 80% due to the complexity 
of problem-solving and calculations. Tables 1 and 2 
show the values of RMSE and R2 of neural network 
modeling for the test data and total data using            
different training algorithms. 

According to the results of this study, it can be 
stated that GDBP training algorithm with 8 hidden 
layers neurons, BFGS with 38 neurons, Rprop with 35 
neurons, SCGBP with 33 neurons, and LMBP with 38 
neurons have the best performance, respectively. 

To find the optimized parameters in RBF neural 
network, at first, MSE was calculated for obtaining 
the maximum number of network neurons. It was 
observed that with the increased maximum number 
of neurons, MSE firstly reduced, but after 29 neurons, 
MSE increased. Next, to find a Spread parameter 
showing the variance, the maximum neuron value of 
29 was selected, and MSE was found for various 
Spreads. Correspondingly, it was observed that with 
increasing Spread, MSE firstly reduced, but after 64, it 
increased. MSE and R2 values for the optimized         
parameters (Goal=0, MaxNeuron=29, Spread=64) 
were obtained as 9.98% and 0.84, respectively. 

According to the results indicated in tables 1 and 
2 and the RBF network, it can be stated that neural 
network with training algorithms of BFGS with R2 of 
0.91 (R=0.96) and RMSE of 7.40% (MSE=2.72%) has 
the best performance in the evaluation ESAK.              
Therefore, in order to estimate ESAK with high             
accuracy, a two-layer perceptron neural network 
along with BFGS training algorithms as well as 38 
hidden layer neurons can be used. Figure 3 shows the 
results of the BFGS training algorithm for all the data 
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Figure 2. Two-layer neural network with 5 inputs and the            
tan-sigmoid transfer function and one output with the linear 

transfer function. 
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with a good correspondence; however, it is not            
complete. However, the changes were insignificant, 
and it can be ensured that the network has not              
overfitted, so the correlation coefficient between  
output and target is 0.96, indicating a high                    
correlation between these two. Furthermore, the 
RMSE for all the data was obtained as 0.67 mGy, 
which is equal to 7.40%. Furthermore, it can be seen 
that, except in some limited instances, the error in 
other samples is insignificant. The mean and                  
standard deviation in the histogram diagram were 
also obtained as -0.05 mGy and 0.67 mGy,                     
respectively, and only 3 outlier data exist with an 
error of more than 2 mGy. In addition, the highest 
error distribution was around zero. Figure 4 shows 
the results of the BFGS training algorithm for the test 
data. According to Figure 4, RMSE for the test data 
was obtained as 0.81 mGy, which is equal to 8.93%, 

and the correlation coefficient between output and 
target was also 0.95, showing a high correlation. 
Moreover, the mean and standard deviation in the 
histogram were -0.18 mGy and 0.80 mGy,                      
respectively. 

Figure 5 shows the performance diagram of the 
BFGS training algorithm, the performance index of 
which was MSE, and the early stopping method was 
applied in the training process in order to prevent 
overfitting of the network. The diagram represents 
the best performance regarding the validation of the 
data on epoch 35 with a value obtained as 0.56. The 
network started data overfitting from epoch 35, and 
despite the decreased MSE values of training data, the 
MSE value of the validation data increased in the next 
epochs. Therefore, the network was stopped at this 
epoch and its weights were used as the final weights. 
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BFGS algorithm GDBP algorithm 
RMSE Test 
Data (mGy) 

RMSE All 
Data (mGy) 

R2 Test 
Data 

R2 All 
Data 

Neuron no. 
RMSE Test 
Data (mGy) 

RMSE All 
Data (mGy) 

R2  
Test Data 

R2  
All Data 

Neuron no. 

0.96 0.69 0.82 0.19 32 1.45 1.19 0.72 0.72 5 
0.83 0.80 0.83 0.88 33 1.29 1.25 0.65 0.69 6 
0.84 0.74 0.85 0.89 34 1.34 1.16 0.67 0.74 7 
0.99 0.77 0.87 0.88 35 1.05 1.04 0.86 0.80 8 
1.10 0.93 0.78 0.83 36 0.95 1.25 0.73 0.70 9 
0.95 0.85 0.82 0.86 37 0.98 1.12 0.78 0.76 10 
0.81 0.67 0.90 0.91 38 1.37 1.14 0.51 0.76 11 

Table 1. RMSE (root mean square error) and R2 (coefficient of determination) of GDBP and BFGS algorithms. (mGy: milligray). 

LMBP algorithm Rprop algorithm SCGBP algorithm   
RMSE Test 
Data (mGy) 

RMSE All 
Data (mGy) 

R2 Test 
Data 

R2 All 
Data 

RMSE Test 
Data (mGy) 

RMSE All 
Data (mGy) 

R2 Test 
Data 

R2 All 
Data 

RMSE Test 
Data (mGy) 

RMSE All 
Data (mGy) 

R2 Test 
Data 

R2 All 
Data 

Neuron no. 

1.21 0.80 0.82 0.88 0.84 0.96 0.80 0.82 0.74 0.95 0.89 0.87 32 
1.29 0.91 0.79 0.85 1.17 0.82 0.77 0.87 0.82 0.72 0.86 0.90 33 
1.10 0.78 0.82 0.88 0.89 0.86 0.85 0.86 1.07 0.87 0.82 0.86 34 
1.20 0.87 0.78 0.86 1.06 0.78 0.82 0.88 0.90 0.78 0.86 0.88 35 
1.21 0.80 0.78 0.88 1.19 0.64 0.80 0.88 0.91 0.90 0.84 0.84 36 
1.17 0.86 0.74 0.86 1.16 0.85 0.77 0.86 0.94 0.87 0.82 0.85 37 
0.77 0.70 0.91 0.90 1.12 0.95 0.80 0.82 0.91 0.75 0.85 0.89 38 

Table 2. RMSE (root mean square error) and R2 (coefficient of determination) of SCGBP, Rprop, and LMBP. algorithms. (mGy:          
milligray) 

Figure 3. The results of two-layer perceptron neural network 
with the BFGS training algorithm and 38 hidden layer neurons 

for all the data. 

Figure 4. The results of two-layer perceptron neural network 
with the BFGS training algorithm and 38 hidden layer neurons 

for the test data. 
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DISCUSSION  

 

In this study, the ability of ANN to predict the 
ESAK in mammography screening was investigated 
to determine the absorbed dose of the breast in the 
absence of the measurement tools. According to the 
obtained results, ANN with BFGS training algorithm 
showed a good performance in predicting the ESAK 
values. Thus, using this method, the limitations in the 
process of preparing dosimeters are removed and 
with the information of individuals as well as the     
parameters related to the mammography unit, it 
would be possible to estimate MGD accurately before 
exposing the patient to radiation. 

By comparing the results of this research, it was 
shown that the modified back-propagation                    
algorithms yield better results compared to GDBP 
and RBF neural networks, which is in agreement with 
the results of the Bayram et al. study (22). Notably, the 
BFGS algorithm is performed based on Newton's 
method, but it is not needed to compute                        
second-order partial derivatives, and the Hessian 
matrix is updated approximately in each iteration of 
the algorithm. The BFGS algorithm has also been  
recognized as the most successful algorithm among 
published studies (23) that used quasi-newton               
methods and is suitable for training small networks. 

Hagan et al. in 2014 have revealed that if the   
number of hidden layer neurons is low, the network 
cannot detect the input-output relationship, and if it 
is too high, the network begins to memorize the             
pattern in order to perform well during training; 
however, it has a poor performance for test data and 
lacks generalizability in this regard (17). At this work, 
the RMSE and the correlation coefficient of the test 
data for the BFGS algorithm were obtained as 8.93% 
and 0.95, respectively, which are very close to the 
results of all data. Correspondingly, it can be inferred 
that the number of hidden neurons is correctly            
selected and the network is not overfitted and        

extrapolated. 
In another study, Mohammadi et al. (24) have             

evaluated the MGD during mammography using the 
two methods of TLD measurement and Monte Carlo 
simulation; their results showed that the absorbed 
dose difference rate in breast tissue varied from 
5.70% to 17%. However, the present study predicted 
a MGD with a dose difference rate of 2.72%                   
compared to the measured values. 

Most previous studies (4,9,16) have focused on a 
specific breast model, including skin thickness and 
breast radius, while ANN allows for more complexity 
and parameters. This can be considered as an            
advantage over recent studies that were more          
sophisticated and provided more realistic breast 
models for dosimetry calculations. In a study               
conducted on the estimation of the MGD using MLP 
neural network using different training algorithms 
such as LMBP, BFGS, and SCGBP, C ceke et al. (25) have 
selected LMBP training algorithm with a correlation 
coefficient of 0.85 as the optimal neural network. 
However, in the present study, ANN showed a               
correlation coefficient of 0.96. Massera et al. (15) in 
their study have used ANN with Keras and             
Scikit-learn libraries for regression of dosimetry          
values applied to mammography, which showed a 
good performance with a 3% error for predicting the 
calculated values of both MGD and ESAK. Though, in 
the present study, the error rate was calculated as 
2.72%. 

 
 

CONCLUSION 
 

In the present research, ANN has successfully 
found the complex pattern involved between ESAK 
and various parameters, so it can be considered as an 
effective method among different protocols and as an 
alternative or complementary method to other ESAK 
estimation techniques such as parametric equations 
and polynomial fit. In addition, new parameters that 
may play an important role in the value of ESAK in 
future studies can be added to the neural network 
along with more data in this regard as well as other 
preprocessing methods that can be used for the           
network development. 
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