Background: Radon and thoron are invisible, odorless, heavy and radioactive gases which are ubiquitously present in dwellings and the environment. In the present work, seasonal variation of indoor radon, thoron and their progeny concentrations has been studied in the dwellings of industrially polluted cities in District Faridabad, Haryana and District Mathura in Uttar Pradesh.

Materials and Methods: LR-115, Type- II (Kodak Pathe, France), peelable, plastic track detectors commonly known as solid state nuclear track detectors (SSNTDs) were used to measure the radon thoron concentration over long integrated times. The measurements were carried out in the mixed field of radon and thoron and the detectors were exposed for about 90 days.

Results: The average value of radon and thoron concentration in the dwellings varied from 23.5 Bq/m3 to 65.2 Bq/m3 and 9.8 Bq/m3 to 18.7 Bq/m3 respectively in different seasons. The average annual exposure and annual effective dose in living rooms due to radon and thoron progeny was estimated to be 0.195 WLM (working level month) and 0.74 mSv respectively. The average life time fatality risk of lung cancer from the chronic radon and thoron progeny exposure was estimated to be 5.8×10^{-3} (0.58%).

Conclusion: The seasonal variations of measured radon levels in the environment of LPG bottling plant, radon-thoron levels and inhalation dose due to radon and thoron and their progeny in dwellings indicate that the levels were higher in winter (October to January) than in summer (April to July).
pooled to have a more significant results about radon-thoron levels and inhalation dose rates. In the present work, we report on the seasonal variation of radon-thoron and their progeny levels in the dwellings in South Haryana and Western U.P, besides LPG bottling plant in Haryana. There are various natural and man made sources of radiation in these areas, like refinery, thermal power plant, geothermal springs, slate mines, industrial zones, aravali range etc., due to which it is very important to carry out a systematic study of radon-thoron levels in the dwellings from the health and hygiene point of view of the occupants.

MATERIALS AND METHODS

Experimental Methods

The Radon and thoron measurements were carried out using LR-115 plastic track detector (Solid State Nuclear Track Detectors) exposed in the mixed field of radon-thoron in the environment of LPG bottling plant. It consists of a 12-13 µm thick alpha-sensitive layer of red dyed cellulose nitrate plastic deposited on a 100 µm thick non etchable polyester base. It is sensitive to alpha particles with energies in the range of 1.7-4.2 MeV emitted by radon in the surrounding air for a distance of 1-6 cm. The LR-115 detectors were used in view of the fact that LR-115 detectors do not develop tracks originating from the progeny alphas deposited on them and are therefore best suited for alpha radioactive measurements in the ambient air (12-13).

The dosimeter employed for the measurement consists of twin chamber system with SSNTDs placed on the two sides of the central partition inside the cup and a bare film placed outside it as shown in figure 1 and details discussed elsewhere (14). Each chamber has a length of 4.5cm and a radius of 3.1cm. The LR-115 film was fixed in the dosimeter system and mounted at the same place and the standard etching procedure specified by the manufacturer has been followed for the same. The etched films after removal of the base were recorded for its track density using the well calibrated spark counter design characteristics are similar to the one discussed by Garakani (15).

RESULTS AND DISCUSSION

Radon, thoron and their progeny dosimetry

From the track density radon and thoron concentrations were calculated using the sensitivity factor determined from the controlled experiments. The concentrations of radon (C_R) and thoron (C_T) were calculated by using the following relations (16, 17).

$$C_R (Bqm^{-3}) = \frac{T_m}{d} \times S_m$$ \hspace{1cm} (1)

$$C_T (Bqm^{-3}) = \frac{T_f - d \times C_R}{d} \times S_{rf} \times S_f$$ \hspace{1cm} (2)

Where,

- C_R = Radon concentration
- C_T = Thoron concentration
- T_m = Track density in membrane compartment
- T_f = Track density in filter compartment
- d = Exposure time (100days)

![Figure 1. Radon-Thoron mixed field dosimeter System.](image-url)
Sensitivity factor for membrane compartment (S_m) = 0.019 ± 0.003 Tpcm^{-2}d^{-1}/Bqm^{-3}
Sensitivity factor for radon in filter compartment (S_r) = 0.020 ± 0.004 Tpcm^{-2}d^{-1}/Bqm^{-3}
Sensitivity factor for thoron in filter compartment (S_t) = 0.016 ± 0.005 Tpcm^{-2}d^{-1}/Bqm^{-3}

The inhalation dose in mSv/y was estimated using the formula:

\[D = \left\{ (0.17 + 9F_R) C_R + (0.11 + 32F_T) C_T \right\} \times 7000 \times 10^{-6} \] \tag{3}

The values of radon-thoron levels and their seasonal variation in the dwellings in western U.P. and South Haryana are given in table 1. It reveals from the table that the average value of radon and thoron concentration varies from 23.5 Bq/m^3 to 65.2 Bq/m^3 and 9.8 Bq/m^3 to 18.7 Bq/m^3 respectively in different seasons. The minimum, maximum and average value of annual inhalation dose due to radon, thoron and their progeny and their seasonal variation is shown in figure 2. The inhalation dose was found to be more in the dwellings in District Faridabad than in Mathura. This was probably due to the fact that Faridabad is an industrial hub and lots of industries using fossil fuels are in operation here, besides a thermal power plant. The seasonal variation of radon levels in the environment of LPG bottling plant is shown in figure 3.

Radon and thoron daughters dosimetry

From the obtained values of radon and thoron, the seasonal variation of daughter concentration of radon, thoron in terms of (PAEC) potential alpha energy concentration (mWL), annual exposure in (WLM), were calculated and the values are given in table 2 and 3 respectively. The measured radon/thoron PAEC was converted into radon concentration using the formula

\[C_R \text{ or } C_T (\text{Bq/m}^3) = \frac{\text{PAEC (WL)}}{3700/F} \] \tag{4}

Where F is equilibrium factor and its value is 0.4 and 0.1 for radon and thoron,

Table 1. Seasonal variation of indoor radon and thoron levels in dwellings.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Concentration</th>
<th>Radon conc. (Bq/m^3)</th>
<th>Thoron conc. (Bq/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter</td>
<td>Autumn</td>
<td>Summer</td>
</tr>
<tr>
<td>1. Minimum</td>
<td>40.7</td>
<td>22.3</td>
<td>31.2</td>
</tr>
<tr>
<td>2. Maximum</td>
<td>80.6</td>
<td>46.8</td>
<td>54.2</td>
</tr>
<tr>
<td>3. Average Value</td>
<td>65.2</td>
<td>32.6</td>
<td>40.2</td>
</tr>
</tbody>
</table>

Figure 2. Seasonal variation of annual inhalation dose due to radon and its progeny and thoron and its progeny.
respectively as given in UNSCEAR report \(^{(18)}\). Annual exposure due to radon and its progeny have been calculated by using the generic relations given in the report of ICRP \(^{(19)}\). The exposure due to radon and thoron daughters was calculated on seasonal basis and the annual exposure was calculated by taking the sum for all the four seasons. The annual exposure due to radon and thoron, lifetime fatality risks and annual effective dose were calculated and the results are given in table 4. The PAEC was converted into annual effective dose by using dose conversion factors; the radon daughter dose conversion factor for members of the public is 3.88 mSv per WLM as recommended by ICRP \(^{(20)}\), where as the effective dose equivalent for thoron is 3.4 mSv per WLM as recommended by UNSCEAR \(^{(21)}\). The lifetime risk associated with indoor radon exposure was calculated by using 1 WLM = \(10 \times 10^{-6}\) cases/year. If the risk persists for 30 years, Life time fatality risk = \(3 \times 10^{-4}\) cases/WLM \(^{(22)}\).

Table 2 shows that the minimum, maximum and average concentration of radon daughters varied from 4.39 mWL to 8.70 mWL with an average value of 7.04 mWL in winter, 2.41 mWL to 5.05 mWL with an average value of 3.52 mWL in autumn, 3.37 mWL to 5.85 mWL with an average value of 4.34 mWL in summer, 2.14 mWL to 3.21 mWL with an average value of 2.54 mWL in rainy season, and for thoron daughters varied from 0.17 mWL to 0.73 mWL with an average value of 0.50 mWL in winter, 0.08 mWL to 0.46 mWL with an average value of 0.38 mWL in autumn, 0.13 mWL to 0.53 mWL with an average value of 0.33 mWL in summer, 0.06 mWL to 0.33 mWL with an average value of 0.26 mWL in rainy season.

Table 3 shows that the minimum, maximum and average value of exposure from radon daughters varied from 0.045 WLM to 0.089 WLM with an average value of 0.073 WLM in winter, 0.025 WLM to 0.052 WLM with an average value of 0.036 WLM in autumn, 0.035 WLM to 0.060 WLM with an average value of 0.045 WLM in summer, 0.022 WLM to 0.033 WLM with an average value of 0.026 WLM in rainy season and for thoron daughters varied from 1.74 \(\times 10^{-3}\) WLM to 7.45 \(\times 10^{-3}\) WLM with an average value of 5.10 \(\times 10^{-3}\) WLM in winter, 0.81\(\times 10^{-3}\) WLM to 4.70 \(\times 10^{-3}\) WLM with an average value of 3.88 \(\times 10^{-3}\) WLM in summer, 1.32 \(\times 10^{-3}\) WLM to 5.41 \(\times 10^{-3}\) WLM with an average value of 3.37 \(\times 10^{-3}\) WLM in rainy season.

Table 4 shows that the minimum, maximum and average value of annual exposure from radon and thoron daughters varied from 0.127 WLM to 0.237 WLM with an average value of 0.180 WLM, the life time fatality risk varied from 0.39 \(\times 10^{-4}\) to 0.76 \(\times 10^{-4}\) with an average value of 0.58 \(\times 10^{-4}\) and the annual effective dose from
Seasonal variation of radon, thoron and their progeny levels

Table 2. Seasonal variation of the potential alpha energy concentration (PAEC) of radon thoron daughters in dwellings.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Concentration</th>
<th>PAEC due to radon (mWL)</th>
<th>PAEC due to thoron (mWL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Winter</td>
<td>Autumn</td>
</tr>
<tr>
<td>1</td>
<td>Minimum</td>
<td>4.39</td>
<td>2.41</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>8.70</td>
<td>5.05</td>
</tr>
<tr>
<td>3</td>
<td>Average Value</td>
<td>7.04</td>
<td>3.52</td>
</tr>
</tbody>
</table>

Table 3. Seasonal variation of the annual exposure due to radon thoron daughters in dwellings.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Values (WLM)</th>
<th>Exposure due to radon progeny (WLM)</th>
<th>Exposure due to thoron progeny (WLM ×10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Winter</td>
<td>Autumn</td>
</tr>
<tr>
<td>1</td>
<td>Minimum</td>
<td>0.045</td>
<td>0.025</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>0.089</td>
<td>0.052</td>
</tr>
<tr>
<td>3</td>
<td>Average Value</td>
<td>0.073</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Table 4. Radon and thoron daughters annual exposure (WLM), life time fatality risk factor and annual effective dose in the dwellings.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Values</th>
<th>Annual exposure (Rn) (WLM)</th>
<th>Annual exposure (Tn) (WLM ×10⁻³)</th>
<th>Annual exposure (Rn + Tn) (WLM)</th>
<th>Life time fatality risk factor (×10⁻⁴)</th>
<th>Annual effective dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum</td>
<td>0.127</td>
<td>4.48</td>
<td>0.132</td>
<td>0.39</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>0.234</td>
<td>20.93</td>
<td>0.255</td>
<td>0.76</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
<td>0.180</td>
<td>15</td>
<td>0.195</td>
<td>0.58</td>
<td>0.74</td>
</tr>
</tbody>
</table>

radon and thoron daughters varied from 0.50 mSv to 0.98 mSv with an average value of 0.74 mSv.

CONCLUSION

The seasonal variations of measured radon levels in the environment of LPG bottling plant, radon-thoron levels and inhalation dose due to radon and thoron and their progeny in dwellings indicate that the levels were higher in winter (October to January) than in summer (April to July). It is because the ventilation becomes poor in winter due to lower exchange rate of air. The decrease of radon concentration in monsoon season is due to the fact that the soil is saturated with water (22). The average value of inhalation dose in certain dwellings is significantly higher than the Global average value (1).

In the light of these findings, the LPG bottling plants and the industries using fossil fuels may affect doses from external irradiation and the inhalation of radon decay products is significant from health point of view. Necessary steps should be taken to minimise the adverse effects on the environment from NORMs exposures through monitoring, safe work guidelines etc.

ACKNOWLEDGEMENTS

The authors are thankful to the residents of dwellings in District Faridabad.
REFERENCES

