[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 4 (10-2024) ::
Int J Radiat Res 2024, 22(4): 941-946 Back to browse issues page
Significance of long-noncoding RNA ATB and SChLAP1 expression in liquid biopsy of bone scan-confirmed metastatic prostate cancer patients
S.E. El Feky , O.S. Zahra , M.N. Salem , M.I. Morsi
Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt , shaymaa.elfeky@alexu.edu.eg
Abstract:   (862 Views)
Background: Long non-coding RNAs (LncRNAs) play an important role in the biological and pathological processes of many cancers. LncRNA SChLAP1 and ATB have been shown to be overexpressed in a variety of cancers and may be involved in tumor cell invasion and metastasis. The goal of this study was to investigate the significance of lncRNA ATB and SChLAP1 expression in liquid biopsy of metastatic prostate cancer (PCa) relative to routine investigations. Materials and Methods: urine samples from 65 PCa patients we collected to assess ATB and SChlap1 by realtime PCR, serum samples were collected to assess PSA. Bone scan and clinicopathological data including Gleason sum, clinical stage, tumor size and lymph node involvement were collected. Results: A significant elevation in lncRNA SChLAP1 and ATB expression in bone scan-diagnosed metastatic PCa patients. Both markers were significantly associated with advanced clinical stage, Gleason sum and tumor size. SCHLAP1 expression has high specificity (100%) and moderate sensitivity (68%) at a cutoff point of 2.528. ATB expression has a high sensitivity (93.75%) and specificity (75.76%) at a cutoff value of 4.55. In univariate analysis, Gleason score (> 8), tumor size (> 2), lncRNA ATB express (>4.55), lncRNA SCHAP (>2.53), and PSA (> 35 pg/ml) were independently predictive of a positive bone scan. Only ATB was significant, regardless of the other adjusted factors. Conclusions: Expression levels of LncRNA SCHALP1 and ATB in PCa patients’ urine samples are promising, non-invasive markers that are associated with advanced clinicopathological parameters, including advanced clinical stage, high grade (Gleason sum) and larger tumor size.
Keywords: Prostate cancer, lncRNA, liquid biopsy, ATB, SChLAP1.
Full-Text [PDF 957 kb]   (99 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71: 209-249. https://doi.org/10.3322/caac.21660 [DOI:10.3322/caac.21660.] [PMID]
2. Jacobson AF and Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med 25(9): 1219-1223. doi: 10.1007/s002590050287. [DOI:10.1007/s002590050287] [PMID]
3. Song H, Jin S, Xiang P, Hu S, Jin J (2020) Prognostic value of the bone scan index in patients with metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. BMC Cancer 20: 238. https://doi.org/10.1186/s12885-020-06739-y [DOI:10.1186/s12885-020-06739-y.] [PMID] []
4. Iuliani M, Simonetti S, Ribelli G, Napolitano A, Pantano F, Vincenzi B, et al. (2020) Current and emerging biomarkers predicting bone metastasis development. Front Oncol 3, 10: 789. doi: 10.3389/fonc.2020.00789. [DOI:10.3389/fonc.2020.00789] [PMID] []
5. Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, et al. (2018) Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 5, 362: k3519. doi: 10.1136/bmj. k3519. [DOI:10.1136/bmj.k3519] [PMID] []
6. Alqudah MAY, Al-Samman R, Matalgah O, Abu Farhah R (2022) Early detection of prostate cancer: self-reported knowledge and attitude of physicians in Jordan. Inquiry 59: 469580221095822. doi: 10.1177/00469580221095822. PMID: 35469510; PMCID: PMC9052823. [DOI:10.1177/00469580221095822] [PMID] []
7. Grubb RL 3rd (2018) Prostate cancer: Update on early detection and new biomarkers. Mo Med 115(2):132-134. PMID: 30228704.
8. Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen Y-Y (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol, 24: 430-447. [DOI:10.1038/s41580-022-00566-8] [PMID] []
9. Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H, Fan T (2020) Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol, 18: 10:598817. doi: 10.3389/fonc.2020.598817. [DOI:10.3389/fonc.2020.598817] [PMID] []
10. Winkle M, El-Daly SM, Fabbri M, Calin GA (2021) Noncoding RNA therapeutics- challenges and potential solutions. Nat Rev Drug Discov, 20: 629-651. https://doi.org/10.1038/s41573-021-00219-z [DOI:10.1038/s41573-021-00219-z.] [PMID] []
11. Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y, et al. (2017) LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif, 50(6): e12381. doi: 10.1111/cpr.12381. [DOI:10.1111/cpr.12381] [PMID] []
12. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet, 45: 1392-8.10.1038/ng.2771 [DOI:10.1038/ng.2771] [PMID] []
13. Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, et al. (2014) A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia, 16: 1121-1127. [DOI:10.1016/j.neo.2014.11.006] [PMID] []
14. Donohoe KJ, Henkin RE, Royal HD, Brown ML, Collier BD, O'Mara RE, et al. (1996) Procedure guideline for bone scintigraphy: 1.0. Society of nuclear medicine. J Nucl Med, 37(11): 1903-1906. PMID: 8917200.
15. Andersson E, Steven K, Guldberg P (2014) Size-Based enrichment of exfoliated tumor cells in urine increases the sensitivity for DNA-Based detection of bladder cancer. Plos One, 9(4): e94023. doi: 10.1371/journal.pone.0094023. [DOI:10.1371/journal.pone.0094023] [PMID] []
16. Fraser M, Berlin A, Bristow RG, van der Kwast T (2015) Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol, 33: 85-94.10.1016/j.urolonc.2013.10.020. [DOI:10.1016/j.urolonc.2013.10.020] [PMID]
17. Fujita K and Nonomura N (2018) Urinary biomarkers of prostate cancer. Int J Urol, 25: 770-779. doi: 10.1111/iju.13734. [DOI:10.1111/iju.13734] [PMID]
18. Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM, et al. (2014) Nomination and validation of the long noncoding RNA SChLAP1 as a risk factor for metastatic prostate cancer progression: a multi-institutional high-throughput analysis. Lancet Oncol, 15: 1469-1480.10.1016/S1470-2045(14)71113-1.
19. Raab JR, Smith KN, Spear CC, Manner CJ, Calabrese JM and Magnuson T (2019) SWI/SNF remains localized to chromatin in the presence of SCHLAP1. Nat Genet, 51(1):26-29. doi: 10.1038/s41588-018-0272-z. [DOI:10.1038/s41588-018-0272-z] [PMID] []
20. Cimadamore A, Gasparrini S, Mazzucchelli R, Doria A, Cheng L, Lopez-Beltran A, et al. (2017) Long non-coding RNAs in prostate cancer with emphasis on second chromosome locus associated with prostate-1 expression. Front Oncol, 12(7): 305. doi: 10.3389/fonc.2017.00305. [DOI:10.3389/fonc.2017.00305] [PMID] []
21. Huang K and Tang Y (2021) SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis, 12: 188. https://doi.org/10.1038/s41419-021-03455-8 [DOI:10.1038/s41419-021-03455-8]] [PMID] []
22. Li Y, Luo H, Xiao N, Duan J, Wang Z, Wang S (2017) Long noncoding RNA SChLAP1 accelerates the proliferation and metastasis of prostate cancer via targeting miR-198 and promoting the MAPK1 pathway. Oncol Res, 10: 3727/096504017X14944585873631. [DOI:10.3727/096504017X14944585873631] [PMID] []
23. Bottcher R, Hoogland AM, Dits N, Verhoef EI, Kweldam C, Waranecki P, et al. (2015) Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer. Oncotarge, 6: 4036-4050. [DOI:10.18632/oncotarget.2879] [PMID] []
24. Fan YH, Ji CX, Xu B, Fan HY, Cheng ZJ, Zhu XG (2017) Long noncoding RNA activated by TGF-beta in human cancers: A meta-analysis. Clin Chimica Acta, 468: 10-6. [DOI:10.1016/j.cca.2017.02.001] [PMID]
25. Xiao H, Zhang F, Zou Y, Li J, Liu Y, Huang W (2018) The function and mechanism of long non-coding RNA-ATB in cancers. Front Physiol, 10: 321. doi: 10.3389/fphys.2018.00321. [DOI:10.3389/fphys.2018.00321] [PMID] []
26. Ma CC, Xiong Z, Zhu GN, Wang C, Zong G, Wang HL, et al. (2016) Long non-coding RNA ATB promotes glioma malignancy by negatively regulating miR-200a. J Exp Clin Cancer Res, 35(1): 90. doi: 10.1186/s13046-016-0367-2. [DOI:10.1186/s13046-016-0367-2] [PMID] []
27. Han F, Wang C, Wang Y, Zhang L (2017) Long noncoding RNA ATB promotes osteosarcoma cell proliferation, migration and invasion by suppressing miR-200s. Am J Cancer Res, 7(4): 770-783.
28. Qu S, Yang X, Song W, Sun W, Li X, Wang J, et al. (2016) Downregulation of lncRNA-ATB correlates with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol, 37(3): 3933-3938. doi: 10.1007/s13277-015-4252-y. [DOI:10.1007/s13277-015-4252-y] [PMID]
29. Mehra R, Udager AM, Ahearn TU, Cao X, Feng FY, Loda M, et al. (2016) Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur Urol, 70(4): 549-552. doi: 10.1016/j.eururo.2015.12.003. [DOI:10.1016/j.eururo.2015.12.003] [PMID] []
30. Kidd SG, Carm KT, Bogaard M, Olsen LG, Bakken AC, Løvf M, et al. (2021) High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia, 23(6): 634-641. doi: 10.1016/j.neo.2021.05.012. [DOI:10.1016/j.neo.2021.05.012] [PMID] []
31. Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY and Zhou WQ (2016) Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma. Oncol Rep, 36(1): 10-22. doi: 10.3892/or.2016.4791. [DOI:10.3892/or.2016.4791] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

El Feky S, Zahra O, Salem M, Morsi M. Significance of long-noncoding RNA ATB and SChLAP1 expression in liquid biopsy of bone scan-confirmed metastatic prostate cancer patients. Int J Radiat Res 2024; 22 (4) :941-946
URL: http://ijrr.com/article-1-5772-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 4 (10-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4700