[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 421-426 Back to browse issues page
Predicting patient-specific prostate motion using pelvic fat and pelvic cavity volume for prostate radiotherapy
A. Nakamoto , Y. Tanabe , K. Nishioka , Y. Kunii , A. Higashi , H. Nishikawa , R. Kawano , H. Eto , Y. Fuji , H. Aoyama , S. Yamada , S. Takahashi
Faculty of Medicine, Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Japan , tanabey@okayama-u.ac.jp
Abstract:   (383 Views)
Background: The prediction of prostate motion is important for matching planned and delivered dose distributions in prostate radiotherapy. This study aimed to assess the relationship between anatomical characteristics and inter- and intra-fraction prostate motion. Materials and Methods: Sixty-six patients who underwent fiducial marker implantation were retrospectively evaluated. The anatomical characteristics (subcutaneous adipose tissue thickness, pelvic cavity volume, and fat volume of the lesser pelvis around the prostate), inter- and intra-fraction prostate motion, and standard deviations (SDs) in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) directions were determined, and their correlations were analyzed. Additionally, the three-dimensional (3D) distance between the coordinates of the center of gravity of the prostate and inferior margin of the symphysis pubis was calculated. Results: The pelvic cavity volume around the prostate exhibited a moderate correlation with the SD for inter-fraction prostate motion in the LR direction (r=0.47) and that for intra-fraction prostate motion in the AP and LR directions (r = 0.41, 0.52). The 3D distance between the coordinates of the center of gravity of the prostate and inferior margin of the symphysis pubis showed a moderate correlation with the average inter-fraction prostate motion in the AP direction (r=0.46). Conclusion: Prostate motion in the AP and LR directions may be related to the fat and pelvic cavity volumes around the prostate. The evaluation of anatomical characteristics can help predict patient-specific prostate motion during treatment planning.
Keywords: Inter-fraction prostate motion, intra-fraction prostate motion, radiotherapy treatment planning, volumetric modulated arc therapy, anatomical characteristics.
Full-Text [PDF 847 kb]   (86 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Cellini F, Tagliaferri L, Frascino V, Alitto AR, Fionda B, Boldrini L, et al. (2022) Radiation therapy for prostate cancer: what's the best in 2021. Urologia, 89(1): 5-15. [DOI:10.1177/03915603211042335]
2. Greco C, Stroom J, Vieira S, Mateus D, Cardoso MJ, Soares A, et al. (2021) Reproducibility and accuracy of a target motion mitigation technique for dose-escalated prostate stereotactic body radiotherapy. Radiother Oncol, 160: 240-249. [DOI:10.1016/j.radonc.2021.05.004]
3. Pang EPP, Knight K, Park SY, Lian W, Master Z, Baird M, et al. (2020) Duration-dependent margins for prostate radiotherapy-a practical motion mitigation strategy. Strahlenther Onkol, 196: 657-663. [DOI:10.1007/s00066-019-01558-y]
4. Tanabe Y and Eto H (2022) Evaluation of patient-specific motion management for radiotherapy planning computed tomography using a statistical method. Med Dosim, 47(2): e13-e18. [DOI:10.1016/j.meddos.2021.12.002]
5. Tanabe Y, Ishida T, Eto H, Sera T, Emoto Y, Shimokawa M (2021) Patient-specific radiotherapy quality assurance for estimating actual treatment dose. Med Dosim, 46(1): e5-e10. [DOI:10.1016/j.meddos.2020.08.003]
6. Miguel D, de la Llana V, Martinez D, del Castillo A, Alonso D, de Frutos JM, et al. (2019) Dosimetric variations for high-risk prostate cancer by VMAT plans due to patient's weight changes. J Radiother Pract, 18(4): 336-342. [DOI:10.1017/S1460396919000177]
7. Tanabe Y and Ishida T (2019) Optimizing multiple acquisition planning CT for prostate cancer IMRT. Biomed Phys Eng Express, 5(3): 035011. [DOI:10.1088/2057-1976/ab0dc7]
8. Tanabe Y, Ishida T, Eto H, Sera T, Emoto Y (2019) Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim, 44(4): e39-e43. [DOI:10.1016/j.meddos.2018.12.005]
9. Jang H, Baek JG, Kwon SY, Lee, KS, Oh YT (2019) The impact of benign prostatic hyperplasia on bladder volume in radiotherapy of prostate cancer. Int J Radiat Res, 17(3): 401-406.
10. Maruoka S, Yoshioka Y, Isohashi F, Suzuki O, Seo Y, Otani Y, et al. (2015) Correlation between patients' anatomical characteristics and interfractional internal prostate motion during intensity modulated radiation therapy for prostate cancer. Springerplus, 4(1): 1-7. [DOI:10.1186/s40064-015-1382-z]
11. Wong JR, Gao Z, Merrick S, Wilson P, Uematsu M, Woo K, Woo K, Cheng CW (2009) Potential for higher treatment failure in obese patients: correlation of elevated body mass index and increased daily prostate deviations from the radiation beam isocenters in an analysis of 1,465 computed tomographic images. Int J Radiat Oncol Biol Phys, 75(1): 49-55. [DOI:10.1016/j.ijrobp.2008.07.049]
12. Tanabe Y, Kiritani M, Deguchi T, Hira N, Tomimoto S (2023). Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol, 25: 100405. [DOI:10.1016/j.phro.2022.12.002]
13. Pang EPP, Knight K, Fan Q, Tan SXF, Ang KW, Master Z, et al. (2018) Analysis of intra-fraction prostate motion and derivation of duration-dependent margins for radiotherapy using real-time 4D ultrasound. Phys Imaging Radiat Oncol, 28(5): 102-107. [DOI:10.1016/j.phro.2018.03.008]
14. Lopez P, Newton RU, Taaffe DR, Singh F, Buffart LM, Spry N, et al. (2022) Associations of fat and muscle mass with overall survival in men with prostate cancer: a systematic review with meta-analysis. Prostate Cancer Prostatic Dis, 25(4): 615-626. [DOI:10.1038/s41391-021-00442-0]
15. Suzuki T, Saito M, Onishi H, Mochizuki Z, Mochizuki K, Satani K, et al. (2020) Effect of a hydrogel spacer on the intrafractional prostate motion during CyberKnife treatment for prostate cancer. J Appl Clin Med Phys, 21(10): 63-68. [DOI:10.1002/acm2.13005]
16. Takayama K, Mizowaki T, Negoro Y, Norihisa Y, Hiraoka M (2011) Impact of double-balloon rectal catheter use in external-beam radiotherapy for prostate cancer. Int J Clin Oncol, 16: 50-56. [DOI:10.1007/s10147-010-0129-7]
17. de Muinck Keizer DM, Pathmanathan AU, Andreychenko A, Kerkmeijer LGW, van der Voort van Zyp JRN, Tree AC, et al. (2019) Fiducial marker based intra-fraction motion assessment on cine-MR for MR-Linac treatment of prostate cancer. Phys Med Biol, 64(7): 07NT02. [DOI:10.1088/1361-6560/ab09a6]
18. Afkhami Ardekani M, Ghaffari H, Navaser M, Zoljalali Moghaddam SH, Refahi S (2021) Effectiveness of rectal displacement devices in managing prostate motion: a systematic review. Strahlenther Onkol, 197: 97-115. [DOI:10.1007/s00066-020-01633-9]
19. Pang EPP, Knight K, Hussain A, Fan Q, Baird M, Tan SXF, Irene KLS, Zubin M, Tuan JKL (2018) Reduction of intra-fraction prostate motion-determining optimal bladder volume and filling for prostate radiotherapy using daily 4D TPUS and CBCT. Tech Innov Patient Support Radiat Oncol, 5: 9-15. [DOI:10.1016/j.tipsro.2018.01.003]
20. Mahdavi SR, Gharehbagh EJ, Mofid B, Jafari AH, Nikoofar AR (2017) Accuracy of the dose delivery in prostate cancer patients-using an electronic portal imaging device (EPID). Int J Radiat Res, 15(1): 39-47.
21. Venkatesan K, Raphael CJ, Varghese KM, Gopu P, Sivakumar S, Boban M, et al. (2020) Volume and dosimetric analysis of rectum and bladder for prostate carcinoma patients by using kilo voltage cone beam computed tomography (CBCT). Int J Radiat Res, 18(3): 557-569.
22. Vanhanen A, Poulsen P, Kapanen M (2020) Dosimetric effect of intrafraction motion and different localization strategies in prostate SBRT. Phys Med, 75: 58-68. [DOI:10.1016/j.ejmp.2020.06.010]
23. Böckelmann F, Putz F, Kallis K, Lettmaier S, Fietkau R, Bert C (2020) Adaptive radiotherapy and the dosimetric impact of inter- and intrafractional motion on the planning target volume for prostate cancer patients. Strahlenther Onkol, 196: 647-656. [DOI:10.1007/s00066-020-01596-x]
24. Dai Z, Zhu L, Wang A, Guo X, Liu Y, Zhuang Y, et al. (2023) Dosimetric and biological comparison of treatment plans between LINAC and robot systems in stereotactic body radiation therapy for localized prostate cancer. Int J Radiat Res, 21(1): 15-22.
25. Kim HJ, Lee JS, Kim WC (2020) Clinical outcome of stereotactic body radiotherapy for localized prostate cancer: long-term results. Int J Radiat Res, 18(3): 383-388.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nakamoto A, Tanabe Y, Nishioka K, Kunii Y, Higashi A, Nishikawa H, et al . Predicting patient-specific prostate motion using pelvic fat and pelvic cavity volume for prostate radiotherapy. Int J Radiat Res 2025; 23 (2) :421-426
URL: http://ijrr.com/article-1-6402-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4714