Production and quality control of 66Ga as a PET radioisotope

P. Rowshanfarzad1, A.R. Jalilian1, M. Sabet2, M. Akhlaghi1

1 Cyclotron & Nuclear Medicine Department, Nuclear Research Center for Agriculture and Medicine, Karaj, Iran
2 SSDL & Health Physics Department, Nuclear Research Center for Agriculture and Medicine, Karaj, Iran

ABSTRACT

Background: 66Ga ($\frac{1}{2}=9.49$ h, $\beta^+\gamma$: 4.153 MeV, γ: 511, 834, 1039, 2752 keV) has a wide range of applications in different fields of medical sciences. Production of 66Ga became one of our main interests, according to its increasing applications in nuclear medicine, particularly in PET imaging.

Materials and Methods: 66Zn (p,n)66Ga reaction was determined as the best choice for the production of 66Ga, according to the present facilities and conditions. The bombardment was performed by 15 MeV protons in Cyclone 30-IBA accelerator with a current intensity of 180 μA for 67 min. ALICE nuclear code and SRIM nuclear program were used to determine the optimum energy and target thickness. Targets were prepared by electroplating of 66Zn ($>95\%$) on a copper backing. Chemical processing was performed by a no carrier added method consisting of ion exchange chromatography and liquid-liquid extraction. Anion exchange chromatography was used for the recovery of target material. Quality control of the product was carried out in two steps of chemical and radionuclidic purity control.

Results: The activity of 66Ga was 2.41 Ci at the end of bombardment (E.O.B.) and the production yield was 12.04 mCi/μAh. The chemical separation yield was 93% and the yield of chemical recovery of the target material was 97%. Quality control tests showed a radionuclidic purity of more than 97% and the amounts of chemical impurities were in accordance with standard levels.

Discussion: Our production yield was comparable with previous reports given in the literature. The chemical separation method used in this research was simple and brought up acceptable results. So, this process can be considered as one of the best choices for the production of 66Ga.

Keywords: 66Ga, 66Zn production, cyclotron, chemical separation, quality control.

INTRODUCTION

The three radioisotopes 66Ga, 67Ga and 68Ga are well known and widely used in the field of nuclear medicine. 66Ga$^{3+}$ and 68Ga$^{3+}$ have been proposed for positron emission tomography (PET) imaging studies (Loe'h et al. 1980, Goethals et al. 1991, Jurisson et al. 1993, Daube-whitherspoon et al. 1997, Kowalski et al. 2003, Froidevaux et al. 2004, Velikyan et al. 2004, Griffiths et al. 2004, Rovainen et al. 2004). 66Ga has been proposed for the study of some slow dynamic processes (such as lymphatic transport) by positron emission tomography (Goethals et al. 1987, 1988, Lewis et al. 2002), and for radioimmunotherapy by its attachment to monoclonal antibodies (Zweit et al. 1987) in the detection and staging
of tumors and other lesions after dosimetric studies using its high energy positrons (Goethals et al. 1990, Graham et al. 1997, Kairemo 1993) using end point energy of 4.2 MeV (Szelecsenyi et al. 1994). It has been shown that a \(^{66}\text{Ga}\)-labeled somatostatin analogue, selectively targeted somatostatin receptor positive tumors, is a successful imaging agent (Ugur et al. 2002).

\(^{66}\text{Ga}\) has been used in the radiolabelling of blood cells (Ellis and Sharma 1999, Jalilian et al. 2003) and albumin colloids (Naganawa et al. 1977) for various diagnostic purposes. It has been reported for successful folate receptor targeting both \textit{in vitro} and \textit{in vivo} for clinical diagnostic imaging (Ke et al. 2003, Ke et al. 2004, Mathias et al. 2003). \(^{66}\text{Ga}\) can also be used as a standard source for high energy calibration of Ge detectors (Molnar et al. 2002, Helmer et al. 2004, Baglin et al. 2002, Lloyd et al. 1968).

Our recent studies on the preparation and tumor imaging properties of \([^{67}\text{Ga}]\) bleomycin in normal and tumor-bearing mice showed a good tumor/blood and tumor/muscle ratio suggesting an appropriate diagnostic agent (Tabeie et al. 2003).

The aim of this study was to produce \(^{66}\text{Ga}\) as a positron emitter for tumor imaging. Due to the interesting properties and increasing importance of positron emission tomography, the production and preparation of \(^{66}\text{Ga}\) radioisotope is reported in the present paper.

MATERIALS AND METHODS

Production of \(^{66}\text{Ga}\) was performed in the NRCAM 30 MeV cyclotron (Cyclone-30, IBA). Ion Beam Application department-NRCAM provided \(^{66}\text{Zn}\) with a purity of more than 95%. Chemicals were purchased from Aldrich Chemical Company, Milwaukee, WI (USA) and Merck Company (Germany). Gamma spectroscopy was performed with a high purity germanium (HPGe) detector (model GC1020-7500SL) coupled with a Canberraä multichannel analyzer. Radionuclide purity was checked by the same detector. All calculations and counting were based on 1039 keV characteristic peak.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>(^{67}\text{Ga})</th>
<th>(^{68}\text{Ga})</th>
<th>(^{66}\text{Ga})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma) Photon Energy (keV) and abundance (%)</td>
<td>93 (37%), 185 (20.4%), 300 (16.6%), 394 (4.64%)</td>
<td>511 ((\beta^-)) (178%), 1077 (3.0%)</td>
<td>511 ((\beta^-)) (114%), 834 (6.03%), 1039 (37.9%), 2752 (23.2%)</td>
</tr>
<tr>
<td>Electron (s) Energy (keV)</td>
<td>84, 92</td>
<td>1900 ((\beta^-))</td>
<td>4153 ((\beta^-))</td>
</tr>
<tr>
<td>Half Life</td>
<td>78 h</td>
<td>68 m</td>
<td>9.49 h</td>
</tr>
<tr>
<td>Decay Mode</td>
<td>EC to (^{67}\text{Zn})</td>
<td>10% EC to (^{65}\text{Zn}) 90% (\beta^-)</td>
<td>43% EC to (^{66}\text{Zn}) 57% (\beta^-)</td>
</tr>
<tr>
<td>Main Production Method</td>
<td>(^{68}\text{Zn}) (p,2n)(^{67}\text{Ga})</td>
<td>(^{68}\text{Ge}) Daughter (^{66}\text{Zn}) (a,2n)(^{65}\text{Ge})</td>
<td>(^{66}\text{Zn}) (p, n)(^{66}\text{Ga})</td>
</tr>
<tr>
<td>Natural Abundance of Target</td>
<td>(18%)</td>
<td>(28%)</td>
<td>(28%)</td>
</tr>
<tr>
<td>Contaminant</td>
<td>(^{66}\text{Ga}, (^{65}\text{Zn})</td>
<td>(^{68}\text{Ge}) (^{65}\text{Zn})</td>
<td>(^{65}\text{Zn})</td>
</tr>
<tr>
<td>Beam Energy (MeV)</td>
<td>12-22</td>
<td>12-22</td>
<td>6-15</td>
</tr>
</tbody>
</table>

Table 1. Important nuclear characteristics for Ga isotopes.
Selection of the proper reaction and energy

Table 2. Various nuclear reactions for the production of 66Ga.

<table>
<thead>
<tr>
<th>Nuclear Reaction</th>
<th>Useful Energy Range (MeV)</th>
<th>Natural Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66Zn(p,n)66Ga</td>
<td>6-15</td>
<td>27.9</td>
</tr>
<tr>
<td>67Zn(p,2n)66Ga</td>
<td>15-25</td>
<td>4.1</td>
</tr>
<tr>
<td>68Zn(p,3n)66Ga</td>
<td>20-30</td>
<td>18.8</td>
</tr>
<tr>
<td>63Cu(α,n)66Ga</td>
<td>15-25</td>
<td>69.2</td>
</tr>
<tr>
<td>66Zn(d,2n)66Ga</td>
<td>12-16</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Our available reactions were restricted to 66Zn (p,n)66Ga, 67Zn(p,2n)66Ga and 68Zn(p,3n)66Ga, since the only available particle accelerator could accelerate protons in the energy range of 15-30 MeV with a maximum current intensity of 200 microamperes. Among the above mentioned reactions, 66Zn (p,n)66Ga was selected according to its higher thick target yield (Szelecsenyi et al. 1998).

In order to determine the excitation function for 66Zn (p,n)66Ga reaction, ALICE nuclear code (Blann and Bislinghoff 1991) was run for the proton beam energy range of 3-30 MeV (figure 1). On the other hand, many different nuclides may be produced as a result of proton bombardment of 66Zn in the energy range of 0-30 MeV, the most important of which are given in table 3. It can be concluded from table 3 that the most important impurity is 65Ga, since it can not be separated from 66Ga by chemical methods, and proton energy had to be below 15.2 MeV (threshold energy for 66Zn (p,2n)65Ga reaction). The produced copper isotopes (62Cu and 63Cu) could easily be separated by chemical procedures.

65Zn is the only radioactive impurity that can interfere with the target mass (66Zn) in the recovery bulk during target rehabilitation. Thus, if proton energy is 15 MeV, there would just be a small amount of 65Zn (figure 2) and no 66Ga during the whole process.

Excitation function was calculated for 66Zn (p,n) 65Zn reaction using ALICE nuclear code. Our results were compared with the reported measurements of Szelecsenyi et al. (1998), Hermanne et al. (1992) and Levkovskij (1991). Figure 2 shows that results of ALICE code obtained in the present study are in accordance with previous experimental data and confirm that proton energies not exceeding 15 MeV are best for the production of 66Ga with minimum amount of radioactive impurity. Proton energy
was chosen 15 MeV in order to achieve the maximum possible production yield.

Targetry

The method selected for targetry was electrodeposition of 66Zn on a copper backing plate. The target was taken to the irradiation station and was placed at an angle of 6 degrees toward the proton beam in order to achieve higher production yield. The target was cooled by a flow of 18 °C distilled water with a rate of 50 lit/min.

The target had to be thick enough to reduce the energy of incident protons from 15 MeV to about 6 MeV because the optimum proton energy was 15 MeV and the threshold energy of the 66Zn (p,n)66Ga reaction was 5.9 MeV.

SRIM nuclear code (Ziegler et al. 2000) was run in order to determine the best target thickness in the above energy range. The results obtained from SRIM nuclear code are illustrated in figure 3.

It can be concluded from figure 3 that the best target thickness is 473 microns. But the target angulation (6 degrees) reduces the required target thickness by 10 times. We only needed to electrodeposit a 47.3 micron zinc layer on the copper backing. To do so, 66ZnO was dissolved in 0.05 N HCl to prepare a zinc cation-containing solution. The mass of zinc ions in the cell had to be twice as that of the electrodeposited layer. Hydrazin dihydrochloride (2 ml) was added to reduce the bath. Our electrodeposition cell conditions for preparation of thick target are given in table 4.

Electrodeposition in these conditions resulted in a 50 micron zinc layer on the copper backing.

Radiochemical Separation

Several methods have been introduced for the separation of gallium from zinc and copper. Liquid-liquid extraction (LLX) with trioctylamine (TOA) can only separate trace amounts of gallium, zinc and copper (Lahiri et al. 1997). Ion exchange chromatography and electrolysis method is complex, time-consuming, and expensive. Therefore, a novel and simple method is introduced here for the separation of 66Ga from 66Zn.

Figure 2. Excitation function for 66Zn (p, pn) 65Zn nuclear reaction.

Figure 3. The optimum target thickness according to SRIM program.

<table>
<thead>
<tr>
<th>Table 4. Electrodeposition cell conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Volume</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Current Density</td>
</tr>
<tr>
<td>Anode Material</td>
</tr>
<tr>
<td>Distance Between the Electrodes</td>
</tr>
<tr>
<td>Stirrer Frequency</td>
</tr>
<tr>
<td>Total Electrodeposition Time</td>
</tr>
</tbody>
</table>

Downloaded from ijrr.com at 1:12 +0330 on Saturday February 22nd 2020
Production and quality control of 66Ga as a PET radioisotope

The method used in this research was a combination of ion exchange chromatography and liquid-liquid extraction methods.

After the target bombardment process, chemical separation was carried out in no-carrier-added form. The irradiated target was dissolved by 10 N HCl (15 ml, H$_2$O$_2$ added), and the solution was passed through a cation exchange resin (Dowex 50W×8, 200-400 mesh, H$^+$ form) (h:10 cm, Ø:1 cm) which had been pre-treated by passing 25 ml of 9 N HCl. The column was then washed by 25 ml of 9 N HCl with a rate of 1 ml/min to remove copper and zinc ion contents and 66Ga remained on the column. Then 66Ga cations were washed out by 20 ml of 4 N HCl. Finally, solvent-solvent extraction method was used to achieve a higher purity of 66Ga. For this purpose, 10 N HCl (20 ml) was added to the 4N eluent in order to obtain the optimum normality to extract 66Ga ions. Isopropyl ether was used to extract 66Ga from the aqueous phase (2 times). Nitrogen bubbling was used for 10 minutes to mix the aqueous and organic phases.

The mixed organic phases were back-extracted using 12.5 ml of 0.05 N HCl. The resulting high-purity [66Ga] GaCl$_3$ solution was directly used for the labeling step. Schematic diagram of the separation process of carrier-free 66Ga from zinc and copper is given in figure 4.

Recovery process

After the separation of 66Ga from zinc and copper, it was preferred to find a method for the recovery of 66Zn (target material), because it is very expensive. The solution previously gathered in the recovery bulk was heated, almost to dryness, and the remainder was dissolved in 6 N HCl. This solution was loaded on an anion exchange chromatography AG 1×8 column (100-200 mesh, Cl$^-$ form, 25 cm high, 1.5 cm Ø) preconditioned with 25 ml of distilled water and 100 ml of 6 N HCl. The loading rate was 2 ml/min. Copper was washed off the column by 50 ml of 2 N HCl with a rate of 2 ml/min. Then 66Zn was separated by washing the column with 150 ml of 0.05 N HCl.

Quality control of the final product

Quality control of the product was performed in two steps: radionuclidic purity control by gamma spectroscopy using an HPGe detector, and chemical purity control by high resolution colorimetric assays.

RESULTS

66Ga was produced by 15 MeV proton bombardments of an electroplated enriched 0.036 g/cm2 66Zn-target at the angle of 6 degrees in a 30 MeV cyclotron (Cyclone-30, IBA). The target was bombarded with a current intensity of 180 µA for 67 min (200 µAh). The resultant activity
of ^{66}Ga was 2.41 Ci at the end of bombardment (E.O.B.) and the production thick target yield was 12.04 mCi/µAh which was comparable with the data given in the literature (Barrandon et al. 1975, Little and Lagunas-Solar 1983, Tárkányi et al. 1990, Kopecký 1990, Bonardi 1988, Dmitriev 1986, Nagame et al. 1978, Nortier et al. 1991, Intrator et al. 1981).

The chemical separation process was based on a no-carrier-added method and obtained ^{66}Ga in $[^{66}\text{Ga}]\text{GaCl}_3$ form. The chemical separation yield (93%) was obtained by activity measurement before and after chemical processing. The resultant activity after chemical separation process was 2.24 Ci. Concentration of the final product was 56 mCi/ml. The whole chemical processing step took about 3 hours. The target (^{66}Zn) recovery process took about 4 hours with a yield of 97%.

Quality control of the product was performed in two steps:

- **Radionuclide purity**: The gamma spectroscopy of the final sample was carried out by a HPGe detector and showed a radio-nuclide purity higher than 97% showing the presence of 511, 834 and 1039 keV gamma energies, all of which originated from ^{66}Ga (figure 5).

- **Chemical purity**: The presence of copper and zinc cations were checked by high resolution colorimetric assays. The formation of colored dithizone metal complexes demonstrated that the zinc and copper cation concentrations were far below the internationally accepted limits (less than 1.5 ppm zinc and 0.75 ppm copper cations in our assay compared to USP limits: 5 ppm for each).

![Figure 5. Gamma spectroscopy scheme of the final $[^{66}\text{Ga}]{\text{GaCl}}_3$.](image)

DISCUSSION

According to ^{66}Ga increasing medical was considered as one of our high priorities, application, it's production. Results of our calculations for excitation function using ALICE code for the determination of proton beam energy was compared with the previously reported measurements of Hille et al. (1972), Little and Lagunas-Solar (1983), Szelecsényi et al. (1998), Hermann et al. (1992), Levkovskij (1991), Howe (1958) and Tárkányi et al. (1990). The results are shown in figure 6 which shows that ALICE code calculations are in good agreement with the experimental data given in the literature.

The activity of ^{66}Ga produced at the NRCAM was high enough to be used in different fields of study. Comparison of the production yield with the data given in the literature, showed a good agreement. The results are illustrated in figure 7.
Quality control procedures showed satisfactory results and the chemical processing of the product was so efficient that the resultant 66GaCl$_3$ (in 0.05 N HCl) could directly be sent for labeling.

ACKNOWLEDGMENTS

The authors wish to acknowledge Dr. G. Raisali, head of NRCAM for supporting the research, Dr. A. Novinrooz and his colleagues in ion beam application department for providing 65Zn isotope, and also thank Mr. A.A. Rajamand and A. Rahiminejad-Kisomi for their assistance during the production runs.

REFERENCES

Bonardi M. (1988). The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron laboratory. Proc. of the IAEA Consultants' Meeting on Data Requirements for Medical Radioisotope Production (Okamoto K., ed.), P.98. INDC (NDS)-195/GZ, IAEA, Vienna, Austria.

Production and quality control of 66Ga as a PET radioisotope

