[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 16, Issue 2 (4-2018) ::
Int J Radiat Res 2018, 16(2): 235-241 Back to browse issues page
Investigation of the effects of a carbon-fiber tabletop on the surface dose and attenuation dose for megavoltage photon beams
G. Gursoy , E. Eser , I. Yigitoglu , H. Koç , F.C. Kahraman , S. Yamcıcier
Department of Physics, Polatlı Faculty of Arts and Sciences, Gazi University, Ankara,Turkey , eserphy@gmail.com
Abstract:   (3934 Views)
Background: Multiple beams are generally used with an increased possibility that the beam axis intersects the treatment table. Treatment tabletops are commonly made of carbon fiber due to its high mechanical strength and rigidity, low specific density, extremely light and low radiation beam attenuation properties. Purpose of this paper is investigated the dose changes in the buildup region and beam attenuation by a carbon fiber tabletop for high energy 6- and 18-MV photon beams.  Materials and Methods: Measurements were performed for 10 cm × 10 cm and 20 cm × 20 cm field sizes. The surface dose and percentage depth doses (%DD) were measured by a Markus parallel plate chamber at a source-surface distance (SSD) of 100 cm for 6 MV and 18 MV photon beams. Attenuation measurements were made at the solid-water phantom for gantry angles of 0o and 180o rotation of the beam. Results: A carbon fiber tabletop increases the surface dose from 12.87% to 86.65% for 10 cm x 10 cm and from 8.72% to 71.16% for 20 cm × 20 cm field at 6 and 18 MV, respectively. The surface dose with the carbon fiber tabletop in an open field (0o) increases with field size. Conclusion: The carbon fiber tabletop causes a substantially increased surface dose, and also significantly decreases the skin-sparing effect, which is clinically important. The dosimetric effect of the tabletop may be higher, especially for the intensity-modulated radiation therapy depending on the beam orientation.
 
Keywords: Radiation, radiotherapy, carbon fiber tabletop, surface dose, buildup region.
Full-Text [PDF 1034 kb]   (1123 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gursoy G, Eser E, Yigitoglu I, Koç H, Kahraman F, Yamcıcier S. Investigation of the effects of a carbon-fiber tabletop on the surface dose and attenuation dose for megavoltage photon beams . Int J Radiat Res 2018; 16 (2) :235-241
URL: http://ijrr.com/article-1-2241-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 2 (4-2018) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4645