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ABSTRACT

> Review article Hypoxia, a common phenomenon in solid tumors can promote dysfunctional

vascular growth and epithelial-to-mesenchymal transition, leading to cell

mobility and metastasis. The decreased sensitivity of hypoxic tumor cells to

ionizing radiation is one of the main factors affecting the effect of
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effect than conventional radiotherapy. Given that HFRT is delivered within
one or a few fractions, does tumor hypoxia affect its efficacy? Is there any
way to further improve the effect of HFRT? In this review, we focus on the
interaction between HFRT and hypoxia, and how to optimize the regimen of
HFRT to decrease the effect of hypoxia and improve the efficacy is discussed
in detail.
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about the relationship and mutual effect
between hypoxia and HFRT.

INTRODUCTION

Tumor hypoxia is one of the main factors
affecting the effect of radiotherapy. The
conventional radiotherapy mode of 1-2 Gy is to Tumor hypoxia has been observed in many
reduce the effect of hypoxia on radiotherapy by human cancers @). About 90% of solid tumors
reoxygenation of tumor cells between have lower partial pressure of oxygen
radiotherapy. HFRT reduces the number of than normal tissues (). Hypoxia is
fractions and overall treatment duration by characterized by lower oxygen tension than

Hypoxia

using larger doses >2 Gy per fraction (1. How
does hypoxia and radiotherapy affect each other
in HFRT? Better understanding of the
interaction between hypoxia and HFRT is
beneficial to optimize the radiotherapy plan and
improve the outcome. So, here we make a review

normal (2.03-3.04kpa). "Intermediate” hypoxia
(0.13-2kpa) plays an important role in
enhancing tumor invasiveness and metastasis
but does not interfere with radiation-related cell
death. “Radiobiological” hypoxia (inhibiting
radiation-induced cell death) occurs at oxygen
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level below 0.13kpa. As oxygen is further
reduced (less than 0.02 kpa), cancer cells exhibit
survival-oriented mutations and maximal
resistance to radiotherapy ). Tumor hypoxia
can be defined as lower oxygen pressure in
tumors than in surrounding normal tissues,
but the most commonly used definition is
p02<10mmHg ).

Many methods can be used to detect the
condition of hypoxia, but remain to be further
improved. Direct measurements of tumor
oxygenation have been performed
predominantly with the Eppendorf histography.
Exogenous markers have been used for the
detection of hypoxia by immunohistochemical
examination of hypoxic tumor  areas
(pimonidazole) or by positron-emission
tomography (PET) imaging (misonidazole).
Hypoxia-related proteins such as
hypoxia-inducible  factor-la  (HIF-1a) are
considered as potential endogenous markers of
hypoxia (6.

In individualized and complex environments,
functional definitions may be more appropriate.
Therefore, when oxygen supply does not meet
the demand for oxygen, hypoxia-inducible
Factors (HIF)-subunits become stable and tumor
hypoxia begins (). More than 50% of solid
tumors present with heterogeneous hypoxia,
regardless of size and histological characteristics
(8-10),

Tumor vasculature originates from host
vessels and neovascularization induced by
tumor angiogenesis factors (11). The decrease of
oxygenation in tumor cells is due to the disorder
of the structure and function of tumor blood
vessels, which inhibits the normal delivery of
oxygen (12). New vascular formation in tumor
tissues is chaotic. In normal tissues, the
branches of the blood vessels are strictly
regulated, each cell needs to be within
approximately 40 microns of adjacent capillaries
to ensure that the cell has sufficient oxygen and
nutrients. In solid tumors, this branch is more
extensive because of the rapid proliferation of
tumor cells. Rapid tumor proliferation means
higher metabolic demand, which leads to
excessive pro-angiogenic factors. Also, tumor
vessels are constantly remodeled in solid
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tumors, resulting in loss of contact between
endothelial cells and basement membrane and
rupture of capillary beds. Then tumor blood
vessels present large pores and leakage occurs
(13), Therefore, a highly vascularized tumor is not
necessarily a highly oxygenated tumor (11,

A prominent feature of cancer cells is their
insensitivity to micro-environmental signals,
resulting in continual proliferation and reduced
cell death due to the accumulation of driver
mutations and epigenetic changes (4. This
nature of the carcinogenesis process establishes
a strong negative selective pressure that leads to
cell adaptation and creates a heterogeneous
tumor microenvironment in which the clone
population of cancer cells produces a gradient of
nutrients, pH, and metabolites that eventually
produce hypoxia (15.16),

Studies showed that o/f ratio was an
important marker to evaluate repair ability of
cells. The higher o/B ratio was, the more
weakened repair ability of cells became (17). And
the sensitivity to radiation was directly affected
by repair ability of cells. When tumor hypoxia
happened, a/f ratio was increased, indicating

that the sensitivity to radiation was decreased
(18),

Effects of hypoxia on tumor and conventional
radiotherapy

Oxygen supply is necessary for cell growth
but is often reduced in solid tumors, especially at
the center of the tumor mass (19. Tumors must
adapt to hypoxia to support their own growth
and survival. Moreover, tumor hypoxia may be
associated with resistance to radiation and
chemotherapy (20-22), Tatrai et al. showed that in
different human tumor cell lines, hypoxic
environment induced cell-type dependent
changes and activated small GTPase, resulting in
different migration and metastasis promotion
responses (19, Tumor hypoxia promotes
dysfunctional vascular growth and epithelial-to-
mesenchymal transition, leading to cell mobility
and metastasis shown in figure 1. Hypoxia alters
cancer cell metabolism and exacerbates
therapeutic resistance by inducing cell
quiescence (3). So, the main reason for the
failure of radiotherapy on severe hypoxic
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tumors is the decreased sensitivity of hypoxic
tumor cells to ionizing radiation (24).

Hypoxia
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Figure 1. Hypoxia can affect cell apoptosis and metastasis of
tumor via triggering HIF-1a, eNOS and VEGF signaling
pathways.

The methods of reducing the effects of hypoxia
on conventional radiotherapy

Under the conventional radiotherapy mode,
by dividing the total dose, the reoxygenation of
radiotherapy interval reduces the problem of
hypoxic radiation resistance (25).

In the past century, radiologists have
identified several factors that control the
radiation response of tumors and normal tissues
to fractionated radiotherapy. The most critical
factors are 5"R", including repair of sublethal
cellular damage, redistribution of cells within
the cell cycle, reoxygenation of surviving cells,
repopulation of cells after irradiation, and the
radiosensitivity intrinsic to the cells (26).

The conventional radiotherapy model is
based on the classical radiobiology of 5"R" to
optimize the treatment plan. The resistance of
radiotherapy was overcome mainly by
redistribution of cells within the cycle and
reoxygenation of hypoxic cells between
fractions. The sensitivity of cells to radiation
therapy varies with their position in the cell
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cycle 7). During conventional radiotherapy,
tumor cells increase their probability of being in
a sensitive phase during one or more fractions
by progression of the cell cycle between
fractions (28), Hypoxia can be transient because
of fluctuations in tumor blood flow or be chronic
because of increased demand for oxygen within
the tumor and the irregularity of tumor blood
vessels (29), In traditional radiotherapy, transient
hypoxia during radiotherapy can be alleviated
by radiation fractionation, which allows
surviving cells to be reoxygenated between
fractions (28),

Hypofractionated radiotherapy

With the improvement of radiation treatment
planning and delivery, it has become possible to
deliver radiation more accurately to tumors
while limiting the dose to normal tissue around
them. These advances have improved the
treatment and have been able to provide a small
number (<5) highly accurate high-dose radiation
to the target at certain anatomical sites (30).
These techniques, which have been termed
stereotactic body radiation therapy (SBRT) or
stereotactic ablative radiation therapy (SART)
for extracranial treatment and stereotactic
radiosurgery (SRS) for intracranial treatment,
are increasingly being used in different clinical
settings to improve local control of cancer (1.
Conventional radiotherapy is aimed to use
several principles of radiobiology to complete a
small daily dose in a few weeks, which is
significantly different form HFRT (28, In
conclusion, the development of HFRT is based
on the progress of radiation physics such as
image guidance and precise radiotherapy, which
makes it possible to locate, plan and treat the
tumor target area accurately, thus realizing the
high-dose irradiation of tumor and minimizing
the radiation dose received by normal tissue
around tumor.

Different Understandings of Radiobiology of
Hypofractionated Radiotherapy

Despite the wide-spread adoption of HFRT in
the clinic, divergent views existed about the
mechanisms by which HFRT enhances local
control 32-51) shown in table 1.
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The classical radiation biology theory (5"R")
and linear-quadratic (LQ) model are the basis of
conventional radiotherapy models. Some studies
showed that the LQ model may not be suitable
for the accurate evaluation of the killing effect of
tumor cells by HFRT, and some researchers
reported that it remains to be revised to meet
the needs of clinical biologically effective doses
conversion (5254). For example, Sheu et al. found
that when a single dose was greater than 10Gy,
the LQ model significantly underestimated the
killing of cells by HFRT ©3). These studies
suggest that, in addition to the classical LQ
model, there may be other mechanisms such as
changes in tumor cells and microenvironment
involved when the dose is greater than a certain
fraction.

Table 1. Studies supporting or not supporting that
linear-quadratic model is suitable for the therapeutic
evaluation of SBRT.

Studies not supporting
that linear-quadratic
model is suitable for the
therapeutic evaluation of
SBRT

Studies supporting that
linear-quadratic model is
suitable for the
therapeutic evaluation of
SBRT

Song CW et al., 2019. %%

Torok JA et al., 2019. ©®°

Bodo S et al., 2019. *%

Moding EJ et al., 2015. “0)

Song CW et al., 2015. Y

Shuryak I et al., 2015. “¥

Sperduto PW et al., 2015.
(32)

Brown JM et al., 2014. *?

Park HJ et al,, 2012. ©*

Mehta N et al., 2012. **)

Kirkpatrick JP et al., 2008.
(34)

Brenner DJ, 2008. “¥

Garcia-Barrps M et al.,
2003 *

Krause M et al., 2007. *

Szeifert G et al., 2002. (36)

Hoinkis C et al., 2005. “°

Kocher M et al., 2000. 87)

Budach W et al,, 1993. ")

Clement JJ et al., 1978. ©®

van der Kogel AJ, 1985. (48]

On the other hand, some studies confirmed
that the LQ model is suitable for 10 Gy ©9), or
even a single dose of 15 to 20 Gy (7). The LQ
model can also predict the effect of HFRT with
the reference of biologically effective doses
(BED), and it is suitable for predicting the effect
of different radiotherapy modes. There is no
need to modify or replace the model 7). For
now, there are still many studies trying to
modify the LQ model in order to find the most
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suitable predictive model for HFRT, but it does
not go far beyond the traditional LQ model 8 59),
Brown etal combined the standard theory of
radiobiology with the preclinical and clinical
studies of HFRT and concluded that in the HFRT
model, there is no need to change the LQ model,
nor to introduce other biological mechanisms
beyond the classic radiobiological theory 5“R”.
For most tumors, the standard radiobiology
concepts of the 5R’s are sufficient to describe the
clinical effects of HFRT, and the excellent results
obtained from clinical studies are those from the
much larger BED that are delivered with HFRT
(#5), Furthermore, the tumor control probability
(TCP) model for predicting lung SBRT, which is
closest to clinical observations, is also based on a
LQ model of cell killing (28).

Interaction between hypoxia and
hypofractionated radiotherapy

Compared with conventional radiotherapy,
emerging radiotherapy techniques provide a
more valuable physical advantage for patients
with isolated tumors (60 61), HFRT produces
excellent local control rates (>90%) in many
prospective clinical trials of lung tumors (62-67)
However, the local control rate of cancer patients
in daily clinical practice is not as high as in
prospective studies. As the total radiation dose is
completed in only a few fractions, the possibility
of reoxygenation between fractions is reduced,
and the therapeutic effect is affected. So, hypoxia
may be an important cause of resistance to
HFRT. But on the other hand, HFRT can cause
endothelial cell and vascular damage (7), and
aggravate hypoxia, which is not conducive to the
repair of sublethal cellular damage and leads to
the indirect death of tumor cells shown in figure
2.

Effect of hypoxia on
radiotherapy

It has been suggested that the effect of tumor
hypoxia on single high-dose radiotherapy may
outweigh  the effect on  conventional
radiotherapy because the important benefit of
reoxygenation between fractions has been lost
45), Preclinical and modeling studies have shown
that tumor hypoxia can lead to significant
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resistance to single high-dose radiotherapy (8
69). With fractionated radiotherapy, the effects of
hypoxic radiation resistance were reduced by
reoxygenation between fractions (70). Compared
with conventional radiotherapy, HFRT has
technical feasibility and logical advantages, but
the potential reoxygenation is reduced because
the total dose is accomplished within a few
fractions (71, Therefore, the radiation resistance
of hypoxic tumor cells is more serious in HFRT
(12,45,72), A recent LQ modeling study of tumor
hypoxia suggested that HFRT limited the
potential for reoxygenation between fractions
and therefore could lead to a significant
reduction in tumor cell kill ratio in comparison
with conventional radiotherapy (*2). Lindblom et
al. calculated cell survival in the simulated
tumors with a modified LQ model taking into
account different radiosensitivities of
chronically and acutely hypoxic cells. The
simulated treatments were evaluated by
calculating the TCP. They found hypoxia could
have impact on the outcome of HFRT (73),

Direct Cell Death Vascular Damage

v

Indirect Cell Death

Figure 2. Tumor cells are directly and indirectly killed by SBRT
or SRS.

Effect of hypofractionated radiotherapy on
hypoxia

Studies have shown that secondary or
indirect cell death induced by vascular injury
plays an important role in the high-dose
response of tumors to HFRT (3536.74-76) [t has
been reported that a single exposure to an
experimental rodent tumor of 10 Gy or more can
cause severe vascular damage, leading to
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indirect tumor cell death (#1.77-82), Other reports
also suggest that high-dose irradiation-induced
endothelial cell death and vascular dysfunction
can lead to secondary cell death in various types
of tumors (39.83.84), Song et al. found that a single
dose of 15 to 30 Gy induced a dose-dependent
secondary cell death in FSall tumors of C3H
mice, considering the possible deterioration of
the intratumor microenvironment due to
vascular damage. After irradiation with 15 or 20
Gy, the survival rate of FSall tumors decreased
for 2 to 3 days, and began to recover thereafter
in some but not all tumors. While after
irradiation with 30 Gy, cell survival rate
decreased continuously for 5 days. In some
tumors, the cell survival rate of 5 days after 20 to
30 Gy irradiation was 2 to 3 logs less than that
immediately after irradiation. 20 Gy irradiation
significantly =~ reduced blood perfusion,
up-regulated HIF-1a and increased expression of
carbonic anhydrase-9, suggesting  that
irradiation increased tumor hypoxia (34,

Recent studies of radiation-induced changes
in tumor blood vessels have shown that a single
dose of 5 to 10 Gy causes relatively mild vascular
damage, whereas a higher dose of radiation
more than 10 Gy per fraction causes severe
vascular damage %). Song et al. observed in their
reoxygenation studies that high-dose exposure
caused vascular damage to the tumor, leading to
the death of hypoxic cells that escaped the direct
effects of radiation. Therefore, it is concluded
that the decrease of hypoxic cell fraction in
tumor after high dose irradiation is not only due
to the reoxygenation of hypoxic cells, but also
partly due to the indirect death of hypoxic cells
1 81, In analyzing the radiobiological
mechanism of SBRT and SRS, song et al. also
showed that in addition to Kkilling tumor cells
directly, using high-dose irradiation also caused
indirect tumor cell death through vascular
damage 2), Keladaoj et al. used dynamic
positron emission tomography images to
prospectively observe hypoxic volume in the
tumor after a single high dose of radiotherapy by
injecting 18F-fluoromisonidazole into patients
with early NSCLC cancer. It was found that high
single doses of radiation may induce an elevated
and, in some cases, persistent state of tumor
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hypoxia in NSCLC tumors (85),

How to reduce the effect of hypoxia on
hypofractionated radiotherapy

Although many clinical studies have
demonstrated the superior efficacy of HFRT,
many aspects still need to be optimized. One of
the most important issues is to set an optimal
fractionation schedule (including prescription
dose, number of treatment fractions and
interval) for HFRT to mitigate the effect of
hypoxia on radiotherapy.

Studies have shown that a single dose of 24
Gy caused transient vascular dysfunction
associated with adhesion of platelets and
leukocytes to vascular endothelium, and
increase of vascular permeability (86). It doesn't
seem to be a good way to get a daily dose like
conventional radiotherapy. In HFRT, tumor
hypoxia should not be ignored. A new
fractionation paradigm of 12 fractions of
approximately 12 Gy followed by more
moderate dose fractions of 5-6 Gy could increase
the therapeutic ratio. This option has the
advantage of not only providing the largest dose
of radiotherapy when the tumor is resistant to
treatment due to hypoxia, but also allowing a
degree of reoxygenation within a time frame,
but limiting the time for tumor regrowth (87).

Harriss-Phillips et al. simulated SART on
hypoxia and well-oxygenated tumors using
probabilistic parameter distributions and LQ
versus linearquadratic-cubic (LQC) methods,
and evaluated the optimal fractionation schemes
using BED comparisons. The results showed that
the complex temporal dynamics of tumor
oxygenation combined with the probabilistic cell
dynamics in radiotherapy model required a
complex stochastic model to predict the killing
of tumor cells. For HFRT, a high dose in the first
week, followed by a milder dose, may be
beneficial because a high proportion of hypoxic
cells can be eradicated early, while maintaining
a relatively low BED required, with normal
tissue toxicity in tolerable levels (87),

Animal studies found that the tumor
perfusion of hoechst33342 dye was significantly
reduced and vascular morphology changed in
lung cancer-bearing mice at 6 hours after
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high-dose radiotherapy. However, 2 days after
radiotherapy, hoechst33342 perfusion and cd31
density partially recovered. The results
suggested that a single high dose irradiation
produced rapid but reversible vascular collapse
in the tumor (8., A prospective study of six
patients with NSCLC tumors receiving
SBRT-eligible using non-invasive methods
showed that NSCLC patients with detectable
baseline levels of tumor hypoxia might have
higher levels of tumor hypoxia (by a factor of up
to 2.7) 2 days after receiving the first fraction of
SBRT. It was believed that given this
phenomenon of increased hypoxia volume at 2
days after SBRT treatment, tumor oxygenation
should be fully taken into account in the
formulation of the optimal hypofractionated
schedules. To overcome hypoxic radiation
resistance, the SBRT delivery schedule for
patients with more hypoxic tumors could be
altered from 3 times per week to once per week
for 3 weeks (83, Increasing the time between
fractions may allow for more reoxygenation to
occur and may improve clinical outcomes. In
addition, five fractions of 10 Gy delivered every
other day (excluding weekends) improved local
control compared with consecutive daily
fractions (89.90). Shibamoto et al. summarized the
radiobiological properties of HFRT, and based
on these considerations, they suggested that
lung tumors larger than 2 cm in diameter were
irradiated 60 Gy in eight fractions delivered
three times a week (72), Meanwhile, some reports
suggested that the current reference lung SBRT
schedule (18 Gy x 3) represents overdosage, at
least for smaller tumors. Taking into account
changes in tumor oxygenation, it is
recommended to increase the treatment rate by
doing more than three times (such as 10 Gy x5
or 6 Gy x 8) rather than the current reference
schedule (18 Gy x 3) (18),

Pre-treatment  assessment of  tumor
oxygenation using hypoxic imaging is feasible. A
study has explored the feasibility of using a
method for calculating the dose required for
hypoxia subvolume on 18F-HX4 positron
emission tomography (PET) in NSCLC. It was
found that the method to account for
heterogeneous and dynamic hypoxia in target
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volume segmentation and dose prescription
based on 18F-HX4-PET imaging appeared
feasible in NSCLC patients, and the distribution
of oxygen partial pressure within hypoxic target
volumes could impact the required prescribed
dose more than the size of the volume 1. In
turn, hypoxic imaging can be used to develop
personalized treatments. For example, lowering
the prescribed dose reduces the risk of normal
tissue complications in patients with low levels
of hypoxia. This strategy was successful in
patients with head and neck cancer who
selectively received reduced dose to neck nodes
based on hypoxic imaging and achieved 100%
local control 2. Selecting tumors with low
resistance to radiotherapy for dose reduction
can improve the eligibility of patients with more
central lesions for SBRT (85).

In addition to optimizing the dose
segmentation, the sensitizer for HFRT is also a
hot topic. Hypoxia-selective drugs, such as
tirapazamine, can counteract the
radiation-protective effects of tumor hypoxia
after delivery of the first fraction (93).
Alternatively, the use of a hypoxic cell
radiosensitizer immediately before SBRT dose
delivery can sensitize patients with hypoxic
tumors (12.94), It was found that dolanidazole, a
hypoxic cell radiosensitizer combined with a
single 25Gy fraction, improveed 3-year survival
for pancreatic cancer (5.

Other methods of increasing sensitivity in
HFRT, such as manipulating the cell cycle phase
3 and blocking the mechanisms of tumor
repopulation(899), are not covered in this paper.

CONCLUSION

This  paper  discusses the current
understanding of radiobiology of HFRT, the
interaction between hypoxia and HFRT, and the
methods to improve the curative effect of HFRT.
The radiobiology of HFRT is controversial, but
for most tumors the standard radiobiology
concepts of the 5R’s are sufficient to explain the
clinical data besides possible anti-tumor
immunity in certain tumors. As to the
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interaction between hypoxia and HFRT, hypoxia
also affects the efficacy of HFRT, and in turn,
HFRT, through its effect on tumor blood vessels,
can aggravate tumor hypoxia, leading to
secondary death of tumor cells after
radiotherapy. According to the understanding of
the above problems, some schemes for
optimizing HFRT have been proposed in recent
years. The topic about hypoxia and HFRT gains
more and more attention recently. Further
research remains necessary tobetter understand
the phenomenon of hypoxia, clarify the
hypoxia-inducible responses and signaling
pathways, and find more constructive strategies
to improve the effect of HFRT.
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