[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 857-864 Back to browse issues page
Study on the factors affecting the dose error of using I-125 seeds in the treatment of prostate cancer using the Monte Carlo method
H. Gao , Y. Wang , C. Du , X. Li , K. Liu , H. Xue , W. Tang , L. Chen , C. Yan , Y. Tu , L. Sun
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China , slhmz666@suda.edu.cn
Abstract:   (609 Views)
Background: NatuAt present, radioactive seed implantation is a common treatment for prostate cancer, the TPS (treatment planning system) calculates the dose by adding the dose attributed to each source. However, the interseed attenuation effect would result in a difference between the actual dose and the calculated dose. The aim of this study was to identify the factors influencing the interseed attenuation effect. Materials and Methods: I-125 seed sources were selected, and MC (Monte Carlo) method was used to simulate the dose distribution around seed sources. The results obtained from the linear addition of a single-source dose were compared with those obtained considering the interseed attenuation effect. The effects of the medium, source arrangement and source number on the dose were evaluated. Results: The MC simulation results for multiple seed sources are lower than those for linear additive doses in most areas. In different medium, the mean error caused by interseed attenuation effect is the smallest in adipose tissue (0.52%) and the largest in bone (1.41%). Taking four sources as examples, the maximum error is 9.34%, appearing in the plane where the source is located. The error decreases to 1.3% when the source is located 2 mm away from the source plane. The more scattered the sources are in space, the smaller the error will be. Conclusions: A high atomic number and high-density medium will cause a high error. The area with a high error is mainly observed in the plane where the sources are located, the edge error of the source distribution area is larger.
Keywords: radioactive seed implantation, interseed attenuation effect, Monte Carlo, I-125 seed source.
Full-Text [PDF 1032 kb]   (628 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Juste B, Miró R, Morató S, et al.(2020) Prostate cancer Monte Carlo dose model with 177Lutetium and 125Iodine treatments. Radiat Phys Chem, 174: 108908. [DOI:10.1016/j.radphyschem.2020.108908]
2. Machtens S, Baumann R, Hagemann J, et al. (2006) Long-term results of interstitial brachytherapy (LDR-Brachytherapy) in the treatment of patients with prostate cancer. World J Urol, 24: 289-295. [DOI:10.1007/s00345-006-0083-1] [PMID]
3. Holm HH, Juul N, Pedersen JF, et al. (2002) Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urology, 167: 985-988. [DOI:10.1016/S0022-5347(02)80320-2] [PMID]
4. Holm H and Gammelgaard J (1981) Ultrasonically guided precise needle placement in the prostate and the seminal vesicles. J Urology, 125: 385-387. [DOI:10.1016/S0022-5347(17)55044-2] [PMID]
5. Skowronek J (2017) Current status of brachytherapy in cancer treatment-short overview. J Contemp Brachyther, 9: 581. [DOI:10.5114/jcb.2017.72607] [PMID] []
6. Tanaka N, Fujimoto K, Hirao Y, et al. (2009) Variations in international prostate symptom scores, uroflowmetric parameters, and prostate volume after 125I permanent brachytherapy for localized prostate cancer. Urology, 74: 407-411. [DOI:10.1016/j.urology.2008.12.062] [PMID]
7. Jinming H and Ningwen Y (2020) Progress of permanent seed implantation using 125I-seeds for cancer therapy. J Isotopes, 33: 186.
8. Carrier J-F, D'Amours M, Verhaegen F, et al. (2007). Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard. Int J radiat Oncol, 68: 1190-1198. [DOI:10.1016/j.ijrobp.2007.02.036] [PMID]
9. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, et al. (2003) Update of the AAPM task group no. 43 report - a revised AAPM protocol for brachytherapy dose calculations. Int J Radiat Oncol Biol Phys, 57: S430. [DOI:10.1016/S0360-3016(03)01389-0]
10. Rivard MJ, Coursey BM, Dewerd LA, et al. (2004) Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys, 31: 633-674. https://doi.org/10.1118/1.1812603 [DOI:10.1118/1.1646040] [PMID]
11. Burns GS and Raeside DE (1989) The accuracy of single-seed dose superposition for I-125 implants. Med Phys, 16: 627-631. [DOI:10.1118/1.596320] [PMID]
12. Mobit P and Badragan I (2004) Dose perturbation effects in prostate seed implant brachytherapy with I-125. Phys Med Biol, 49: 3171-3178. [DOI:10.1088/0031-9155/49/14/011] [PMID]
13. Meigooni Ali S (1992) Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry. Med Phys, 19: 401-407. [DOI:10.1118/1.596894] [PMID]
14. Kirov AS, Williamson JF, Meigooni AS, et al. (1996) Measurement and calculation of heterogeneity correction factors for an Ir-192 high dose-rate brachytherapy source behind tungsten alloy and steel shields. Med Phys, 23: 911-919. [DOI:10.1118/1.597733] [PMID]
15. Miksys N, Haidari M, Vigneault E, et al. (2017) Coupling I‐125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models. Med Phys, 44: 4329-4340. [DOI:10.1002/mp.12306] [PMID]
16. Stock RG, Stone NN, Tabert A, et al. (1998) A dose-response study for I-125 prostate implants. Int J Radiat Oncol, 41: 101-108. [DOI:10.1016/S0360-3016(98)00006-6] [PMID]
17. Meigooni AS, Meli JA, Nath R (1992) Interseed effects on dose for 125I brachytherapy implants. Med Phys, 19: 385-390. [DOI:10.1118/1.596871] [PMID]
18. Afsharpour H, D'Amours M, Coté B, et al. (2008) A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants. Med Phys, 35: 3671-3681. [DOI:10.1118/1.2955754] [PMID]
19. Yasiri AYA, Abed HF (2018) Estimation of Energy Spectrum and Energy Deposition of Photons Emitted from Brachytherapy 125 I Seed. Indian J Sci Tec, 11: 1-5. [DOI:10.17485/ijst/2018/v11i24/126940]
20. Mason J, Al‐Qaisieh B, Bownes P, et al. (2013) Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET. Med Phys, 40: 031717. [DOI:10.1118/1.4793256] [PMID]
21. Chibani O, Williamson JF, Todor D (2005) Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants. Med Phys, 32: 2557-2566. [DOI:10.1118/1.1897466] [PMID]
22. Carrier JF, Beaulieu L, Therriault‐Proulx F, et al.(2006) Impact of interseed attenuation and tissue composition for permanent prostate implants. Med Phys, 33: 595-604. https://doi.org/10.1118/1.2241562 [DOI:10.1118/1.2168295] [PMID]
23. Tamura K, Araki F, Ohno T (2016) SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations. Med Phys, 43: 3471-3472. [DOI:10.1118/1.4956181]
24. Safigholi H, Sardari D, Jashni SK, et al. (2013) An analytical model to determine interseed attenuation effect in low-dose-rate brachytherapy. J Appl Clin Med Phys, 14: 4226. [DOI:10.1120/jacmp.v14i3.4226] [PMID] []
25. Mountris KA, Visvikis D, Bert J (2019) DVH-based inverse planning using Monte Carlo dosimetry for LDR prostate brachytherapy. Int J Radiat Oncol, 103: 503-510. [DOI:10.1016/j.ijrobp.2018.09.041] [PMID]
26. Al-Qaisieh B, Bownes P, Roberts G (2012) Evaluation of the visibility of a new thinner 125I radioactive source for permanent prostate brachytherapy. Brachytherapy, 11: 460-467. [DOI:10.1016/j.brachy.2012.01.009] [PMID]
27. Johnson M, Colonias A, Parda D, et al. (2006) Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer. Med Phys, 33: 2089-2090. [DOI:10.1118/1.2241102]
28. Wallner K, Merrick G, True L, et al. (2002) I-125 versus Pd-103 for low-risk prostate cancer: morbidity outcomes from a prospective randomized multicenter trial. Cancer Journal, 8: 67-73. [DOI:10.1097/00130404-200201000-00012] [PMID]
29. Rivard MJ (2009) A dosimetric comparison of the model 6711 125I source and a new, smaller diameter brachytherapy seed (model 9011) using Monte Carlo methods. Brachytherapy, 8: Issu 2. [DOI:10.1016/j.brachy.2009.03.028]
30. Kenichi T, Tsuyoshi K, Takahiro H, et al. (2018 ) An in-vitro verification of strength estimation for moving an 125I source during implantation in brachytherapy. J Radiat Res, 59(4): 484-489. [DOI:10.1093/jrr/rry021] [PMID] []
31. Rivard MJ (2009) Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 125I brachytherapy sources. Med Phys, 36: 486-491. https://doi.org/10.1118/1.3056463 [DOI:10.1118/1.3093238] [PMID]
32. Williams J (1997) The interdependence of staff and patient doses in interventional radiology. Brit J Radiol, 70: 498-503. [DOI:10.1259/bjr.70.833.9227232] [PMID]
33. Seltzer SM, Lamperti PJ, Loevinger R, et al. (2003) New National Air-Kerma-Strength Standards For 125I and 103Pd Brachytherapy Seeds. J Res Natl Inst Stand Technol, 108: 337-358. [DOI:10.6028/jres.108.030] [PMID] []
34. Williamson and Jeffrey F (1988) Monte Carlo evaluation of specific dose constants in water for 125I seeds. Med Phys, 15: 686-694. [DOI:10.1118/1.596181] [PMID]
35. Wang R and Li XA (2000) A Monte Carlo calculation of dosimetric parameters of 90Sr/90Y and 192Ir SS sources for intravascular brachytherapy. Med Phys, 27: 2528-2535. [DOI:10.1118/1.1319374] [PMID]
36. Wierzbicki JG, Rivard MJ, Waid DS, et al.(1998). Calculated dosimetric parameters of the IoGold 125I source model 3631-A. Med Phys, 25: 2197-2199. [DOI:10.1118/1.598417] [PMID]
37. Chibani O and Li XA (2003) IVBTMC, A Monte Carlo dose calculation tool for intravascular brachytherapy. Med Phys, 30. [DOI:10.1118/1.1528177] [PMID]
38. Team X-MC. MCNP-Version 5, Vol. I: Overview and Theory. 2003.
39. Rivard MJ (2001) Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M125I source. Med Phys, 28: 629. [DOI:10.1118/1.1355306] [PMID]
40. Chibani O and Li XA (2002) Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements. Med Phys, 29: 835-847. [DOI:10.1118/1.1473134] [PMID]
41. He J, Zhang H, Wang J, et al. (2012) Study on distribution of 125 I seed source dose field. Rad Prot Bulletin, 32: 36-38.
42. Li Z, Jiang S, Yang Z, et al. (2015) Monte Carlo simulation and experimental investigation of 125 I interseed dose attenuation. Chinese J RAD MEDI and PROT, 35: 389-392.
43. Kurudirek M (2014) Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat Phys Chem, 102: 139-146. [DOI:10.1016/j.radphyschem.2014.04.033]
44. Goldstone K (1989) Tissue substitutes in radiation dosimetry and measurement, in: ICRU Report 44, International Commission on Radiation Units and Measurements, USA. WB Saunders; 1990.
45. Hubbell JH and Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and Technology-PL. [DOI:10.6028/NIST.IR.5632]
46. Reed AL (2007) Medical physics calculations with MCNP: a primer. Boston, MA: Los Alamos National Laboratory, X-3 MCC, LA-UR-07-4133.
47. Duggan DM (2004) Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources. Appl Radiat Isot, 61:1443-1450. [DOI:10.1016/j.apradiso.2004.05.070] [PMID]
48. Fasso A, Ferrari A, Ranft J, et al. (2005) FLUKA: a multi-particle transport code. CERN-2005-10. [DOI:10.2172/877507]
49. Niita K, Sato T, Iwase H, et al. (2006) PHITS-a particle and heavy ion transport code system. Radiat Meas, 41: 1080-1090. [DOI:10.1016/j.radmeas.2006.07.013]
50. Reis JP, Menezes AF, Souza EM, et al. (2012) Dose optimization in 125I permanent prostate seed implants using the Monte Carlo method. Comput Phys Commun, 183: 847-852. [DOI:10.1016/j.cpc.2011.12.005]
51. Serhat A (2021) The investigation of tissue composition effects on dose distributions using Monte Carlo method in permanent prostate brachytherapy. Clin Exper Heal Sci, 11: 769-774. [DOI:10.33808/clinexphealthsci.884245]
52. Ali-Reza, Mehan, Haidari, et al. (2019) Dosimetric and radiobiological investigation of permanent implant prostate brachytherapy based on Monte Carlo calculations. Brachytherapy, 18: s 875-882. [DOI:10.1016/j.brachy.2019.06.008] [PMID]
53. Deering SG, Hilts M, Batchelar D, et al. (2021) Dosimetric investigation of 103Pd permanent breast seed implant brachytherapy based on Monte Carlo calculations. Brachytherapy, 20: 686-694. [DOI:10.1016/j.brachy.2020.12.009] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gao H, Wang Y, Du C, Li X, Liu K, Xue H, et al . Study on the factors affecting the dose error of using I-125 seeds in the treatment of prostate cancer using the Monte Carlo method. Int J Radiat Res 2022; 20 (4) :857-864
URL: http://ijrr.com/article-1-4492-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.07 seconds with 50 queries by YEKTAWEB 4645