:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 23-30 Back to browse issues page
Dosimetric  comparison of the heart substructures with IMRT and VMAT techniques in left breast radiotherapy: The effect of deep inspiratory breath-hold
A. Arslan , E. Aktaş , S.K. Eren , I. Dengiz , S.A. Arslan , Y. Güney
Kayseri City Hospital, Clinic of Radiation Oncology, Doctor, Kayseri City Hospital, Kayseri, Turkey , alaettin.arslan@gmail.com
Abstract:   (996 Views)
Background: This study aimed to compare the doses received by the four chambers and vascular structures of the heart during adjuvant radiotherapy (RT) after left breast-conserving surgery (BCS) using intensity-modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT) techniques. Material and Methods: Simulation images were taken of 14 patients who underwent left BCS with both free-breathing (FB) and deep inspiration breath-hold (DIBH) techniques. Left breast RT was planned with both IMRT and VMAT. Planned target volumes 50 and 60, homogeneity index, conformity index, and monitor unit values, as well as radiation doses received by organs at risk, were compared. Results: In IMRT compared to VMAT, in the heart (Dmean, V10, V2 ) and heart substructures (left ventricle [V5] , right ventricle [Dmean], right atrium [Dmean, Dmax], left atrium [Dmean, V5], right coronary artery [RCA; Dmean, Dmax], left artery coronary main [LACM; Dmean], and left circumflex artery [LCxA; Dmean, Dmax]), significant dose reductions were observed. When FB and DIBH results were compared, in the DIBH technique, the heart (Dmean, V25, V10, V2) and heart substructures (left ventricle [Dmean, Dmax, V23, V5], right ventricle [Dmean, Dmax], right atrium [Dmean, Dmax], left atrium [Dmean, Dmax], left anterior descending artery [Dmean, Dmax, V20], RCA [Dmax], LACM [Dmean], and LCxA [Dmean, Dmax]), doses were significantly decreased. Conclusion: In RT of patients with left BCS, significant dose reductions occurred in the lung, heart, and almost all substructures of the heart using DIBH compared to FB.
Keywords: Left breast cancer, breast-conserving surgery, IMRT, VMAT, DIBH, heart substructure radiation doses.
Full-Text [PDF 1494 kb]   (861 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, et al. (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. New England Journal of Medicine, 368(11): 987-998. [DOI:10.1056/NEJMoa1209825] [PMID]
2. Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, et al. (2017) Early Breast Cancer Trialists' Collaborative Group. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. Journal of Clinical Oncology, 35(15): 1641. [DOI:10.1200/JCO.2016.72.0722] [PMID] []
3. Andratschke N, Maurer J, Molls M, Trott KR (2011) Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiotherapy and Oncology, 100(2): 160-166. [DOI:10.1016/j.radonc.2010.08.010] [PMID]
4. Henson KE, McGale P, Taylor C, Darby SC (2013) Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. British Journal of Cancer, 108(1): 179-182. [DOI:10.1038/bjc.2012.575] [PMID] []
5. Arslan A, Aktas E, Sengul B, Tekin B (2021) Dosimetric evaluation of left ventricle and left anterior descending artery in left breast radiotherapy. La Radiologia Medica, 126(1): 14-21. [DOI:10.1007/s11547-020-01201-2] [PMID]
6. Loap P, Fourquet A, Kirova Y (2020) The limits of the linear quadratic (LQ) model for late cardiotoxicity prediction: example of hypofractionated rotational intensity modulated radiation therapy (IMRT) for breast cancer. Int. J Radiat Oncol Biol Phys, 106(5): 1106-1108. [DOI:10.1016/j.ijrobp.2019.12.006] [PMID]
7. Lauche O, Kirova YM, Fenoglietto P, Costa E, Lemanski C, et al. (2016) Helical tomotherapy and volumetric modulated arc therapy: new therapeutic arms in the breast cancer radiotherapy. World Journal of Radiology, 8(8): 735. [DOI:10.4329/wjr.v8.i8.735] [PMID] []
8. Fagundes M, Hug EB, Pankuch M, Fang C, McNeeley S, et al. (2015) Proton therapy for local-regionally advanced breast cancer maximizes cardiac sparing. Int. J Particle Therapy, 1(4): 827-844. [DOI:10.14338/IJPT-14-00025.1]
9. Sixel KE, Aznar MC, Ung YC (2001) Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients. Int. J Radiat Oncol Biol Phys, 49(1): 199-204. [DOI:10.1016/S0360-3016(00)01455-3]
10. Bartlett FR, Colgan RM, Carr K, Donovan EM, McNair HA, et al. (2013). The UK HeartSpare Study: randomised evaluation of voluntary deep-inspiratory breath-hold in women undergoing breast radiotherapy. Radiotherapy and Oncology, 108(2): 242-247. [DOI:10.1016/j.radonc.2013.04.021] [PMID]
11. Latty D, Stuart KE, Wang W, Ahern V (2015) Review of deep inspiration breath‐hold techniques for the treatment of breast cancer. Journal of Medical Radiation Sciences, 62(1): 74-81. [DOI:10.1002/jmrs.96] [PMID] []
12. Rice L, Goldsmith C, Green MM, Cleator S, Price PM (2017) An effective deep-inspiration breath-hold radiotherapy technique for left-breast cancer: impact of post-mastectomy treatment, nodal coverage, and dose schedule on organs at risk. Breast Cancer: Targets and Therapy, 9: 437. [DOI:10.2147/BCTT.S130090] [PMID] []
13. Dell'Oro M, Giles E, Sharkey A, Borg M, Connell C, et al. (2019) A retrospective dosimetric study of radiotherapy patients with left-sided breast cancer; patient selection criteria for deep inspiration breath hold technique. Cancers, 11(2): 259. [DOI:10.3390/cancers11020259] [PMID] []
14. Lai J, Hu S, Luo Y, Zheng R, Zhu Q, et al. (2020) Meta-analysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for left-side breast cancer. Breast Cancer, 27(2): 299-307. [DOI:10.1007/s12282-019-01023-9] [PMID]
15. Feng M, Moran JM, Koelling T, Chughtai A, Chan JL, et al. (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys, 79(1): 10-18. [DOI:10.1016/j.ijrobp.2009.10.058] [PMID] []
16. Park S, Rim CH, Yoon WS (2021) Variation of heart and lung radiation doses according to setup uncertainty in left breast cancer. Radiation Oncology, 16(1): 1-9. https://doi.org/10.21203/rs.3.rs-104606/v2 [DOI:10.1186/s13014-021-01806-5] []
17. Chang CS, Chen CH, Liu KC, Ho CS, Chen MF (2020) Selection of patients with left breast cancer for IMRT with deep inspiration breath-hold technique. Journal of Radiation Research, 61(3): 431-439. [DOI:10.1093/jrr/rraa003] [PMID] []
18. Song J, Tang T, Caudrelier JM, Bélec J, Chan J, Lacasse P, ..., Nair V (2021. Dose-sparing effect of deep inspiration breath hold technique on coronary artery and left ventricle segments in treatment of breast cancer. Radiotherapy and Oncology, 154: 101-109. [DOI:10.1016/j.radonc.2020.09.019] [PMID]
19. Mathieu D, Bedwani S, Mascolo-Fortin J, Côté N, Bernard A A, et al. (2020) Cardiac sparing with personalized treatment planning for early-stage left breast cancer. Cureus, 12(3). [DOI:10.7759/cureus.7247] [PMID] []
20. Gaál S, Kahán Z, Paczona V, Kószó R, Drencsényi R, Szabó J, et al. (2021) Deep-inspirational breath-hold (DIBH) technique in left-sided breast cancer: various aspects of clinical utility. Radiation Oncology, 16(1): 1-11. [DOI:10.1186/s13014-021-01816-3] [PMID] []
21. Ferdinand S, Mondal M, Mallik S, Goswami J, Das S, Manir KS, et al. (2021) Dosimetric analysis of deep inspiratory breath-hold technique (DIBH) in left-sided breast cancer radiotherapy and evaluation of pre-treatment predictors of cardiac doses for guiding patient selection for DIBH. Technical İnnovations & Patient Support in Radiation Oncology, 17: 25-31. [DOI:10.1016/j.tipsro.2021.02.006] [PMID] []
22. Yu PC, Wu CJ, Tsai YL, Shaw S, Sung SY, Lui LT, Nien HH (2018) Dosimetric analysis of tangent-based volumetric modulated arc therapy with deep inspiration breath-hold technique for left breast cancer patients. Radiation Oncology, 13(1): 1-10. [DOI:10.1186/s13014-018-1170-3] [PMID] []
23. Zhang W, Li R, You D, Su Y, Dong W, Ma Z (2020) Dosimetry and feasibility studies of volumetric modulated Arc therapy with deep ınspiration breath-hold using optical surface management system for left-sided breast cancer patients. Frontiers in Oncology, 10: 1711. [DOI:10.3389/fonc.2020.01711] [PMID] []
24. Moignier A, Broggio D, Derreumaux S, El Baf F, Mandin AM, Girinsky T, et al. (2014) Dependence of coronary 3-dimensional dose maps on coronary topologies and beam set in breast radiation therapy: a study based on CT angiographies. Int J Radiat Oncol Biol Phys, 89(1): 182-190. [DOI:10.1016/j.ijrobp.2014.01.055] [PMID]
25. Jacob S, Camilleri J, Derreumaux S, Walker V, Lairez O, Lapeyre M, et al. (2019) Is mean heart dose a relevant surrogate parameter of left ventricle and coronary arteries exposure during breast cancer radiotherapy: a dosimetric evaluation based on individually-determined radiation dose (BACCARAT study). Radiation Oncology, 14(1): 1-10. [DOI:10.1186/s13014-019-1234-z] [PMID] []
26. Marks LB (2002) Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol, Biol Phys, 54(2): 313-316. [DOI:10.1016/S0360-3016(02)02928-0]
27. Tsujino K, Hashimoto T, Shimada T, Yoden E, Fujii O, Ota Y, et al. (2014) Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. Journal of Thoracic Oncology, 9(7): 983-990. [DOI:10.1097/JTO.0000000000000187] [PMID]
28. Yang EH, Marmagkiolis K, Balanescu DV, Hakeem A, Donisan T, Finch W, et al. (2021) Radiation-induced vascular disease-a state-of-the-art review. Frontiers in Cardiovascular Medicine, 8: 223. [DOI:10.3389/fcvm.2021.652761] [PMID] []
29. Gocer GPS and Ozer EE (2020). Effect of radiotherapy on coronary arteries and heart in breast-conserving surgery: a dosimetric analysis. Radiology and Oncology, 54(1): 128. [DOI:10.2478/raon-2020-0013] [PMID] []
30. Naimi Z, Moujahed R, Neji H, Yahyaoui J, Hamdoun A, Bohli M, Kochbati L (2021) Cardiac substructures exposure in left-sided breast cancer radiotherapy: Is the mean heart dose a reliable predictor of cardiac toxicity?. Cancer/Radiothérapie, 25(3): 229-236. [DOI:10.1016/j.canrad.2020.09.003] [PMID]
31. Kataria T, Bisht SS, Gupta D, Abhishek A, Basu T, Narang K, et al. (2016) Quantification of coronary artery motion and internal risk volume from ECG gated radiotherapy planning scans. Radiotherapy and Oncology, 121(1): 59-63. [DOI:10.1016/j.radonc.2016.08.006] [PMID]

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page