:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 97-103 Back to browse issues page
Dose assessment of 137-Cs in agricultural surface soil in Selangor, Malaysia
H. Muthu , K. Ramesh , S. Ramesh , S. Bashir
Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia , rameshtsubra@gmail.com
Abstract:   (612 Views)
Background: The activity concentration (AC) of cesium-137 (137Cs) in the agricultural soil was measured in this study to set reference data and an indicator of the radionuclide fallout especially in Malaysia. Materials and Method: Using the High Purity Germanium (HPGe) gamma-ray spectrometer, the AC of 137Cs was employed to determine the radiological hazards to the public. Results: Results revealed that the AC of 137Cs in the soil samples ranged between 0.34 ± 0.09 to 3.21 ± 0.17 Bqkg-1. Dose rate computed from the corresponding value of AC ranged from 0.01 to 0.10 nGyh-1. The annual effective dose rate ranged between 1.25 to 11.8 µSv y-1. The values of Excessive lifetime cancer risk, ELCR ranged between 0.47 × 10-5 to 4.45 × 10-5  is lesser than the safety threshold of 0. 29 × 10−3. The analysis of variance of this parameter is found to be at p<0.05 which is statistically significant in this study. Conclusion: The outcomes from this study show that the analysed values are below than the recommended values by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNCSEAR) and The International Commission on Radiological Protection (ICRP) and do not cause any radiological hazards to the general population.
Keywords: Cesium-137, nuclear fallout, anthropogenic radionuclides, annual effective dose rate, excessive cancer lifetime risk, radionuclides.
Full-Text [PDF 742 kb]   (750 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Kanasashi T, Miura S, Hirai K, Nagakura J, Itô H (2020) Relationship between the activity concentration of 137Cs in the growing shoots of Quercus serrata and soil 137Cs, exchangeable cations, and pH in Fukushima, Japan. Journal of Environmental Radioactivity, 220-221: 106276. [DOI:10.1016/j.jenvrad.2020.106276] [PMID]
2. Buesseler KO (2014) Fukushima and Ocean Radioactivity. Oceanography, 27(1): 92-105. [DOI:10.5670/oceanog.2014.02]
3. Abdul Adziz MI, Abu Bakar AS, Wo YM, Jaffary NA, Ahmad Z (2010) Distribution of 137Cs in Surface Seawater and Sediment Around Sabah's Sulu-Sulawesi Sea. Environmental & Earth Science, 43(17).
4. Lammer M and Schwerer O (1991) INCD handbook of Nuclear Data for Safeguards.
5. Taira Y, Hayashida N, Yamashita S, Kudo T, Matsuda N, et al. (2012) Environmental contamination and external radiation dose rates from radionuclides released from the Fukushima Nuclear Power Plant. Radiation protection dosimetry, 151(3): 537-545. [DOI:10.1093/rpd/ncs040]
6. Onda Y, Taniguchi K, Yoshimura K, Kato H, Takahashi J, et al. (2020) Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems. Nature Reviews Earth & Environment, 1(12): 644-660. [DOI:10.1038/s43017-020-0099-x]
7. Thornberg C, Vesanen R, Wallström E, Zvonova I, Jesko T, Balonov M, Mattsson S (2005) External and internal irradiation of a Rural Bryansk (Russia) population from 1990 to 2000, following high deposition of radioactive caesium from the Chernobyl accident. Radiation and Environmental Biophysics, 44: 97-106. [DOI:10.1007/s00411-005-0007-2] [PMID]
8. Ramzaev V, Yonehara H, Hille R, Barkovsky A, Mishine A, et al. (2006) Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996-2003. Journal of Environmental Radioactivity, 85(2-3): 205-227. [DOI:10.1016/j.jenvrad.2004.04.014] [PMID]
9. Ramzaev V, Bøtter-Jensen L, Thomsen KJ, Andersson KG, Murray AS (2008) An assessment of cumulative external doses from Chernobyl fallout for a forested area in Russia using the optically stimulated luminescence from quartz inclusions in bricks. Journal of Environmental Radioactivity, 99(7): 1154-1164. [DOI:10.1016/j.jenvrad.2008.01.014] [PMID]
10. Gao Y, Quinn B, Mahmood U, Long D, Erdi Y, St Germain J, Pandit-Taskar N, et al. (2017) A comparison of pediatric and adult CT organ dose estimation methods. BMC Medical Imaging, 17(1): 28. [DOI:10.1186/s12880-017-0199-3] [PMID] []
11. Tian X, Li X, Segars WP, Paulson EK, Frush DP, Samei E (2014) Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology, 270(2): 535-547. [DOI:10.1148/radiol.13122617] [PMID] []
12. Jablon S, Hrubec Z, Boice JD (199) Cancer in populations living near nuclear facilities: a survey of mortality nationwide and incidence in two states. Jama, 265(11): 1403-1408. [DOI:10.1001/jama.265.11.1403] [PMID]
13. Russell RS (1966) Radioactivity and human diet. Pergamon Press, 1966 - Radioactive contamination of food - 552 pages.
14. Middleton LJ (1959) Radioactive strontium and caesium in the edible parts of crop plants after foliar contamination. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 1(4): 387-402. [DOI:10.1080/09553005914550511]
15. Wan Mahmood ZU, Yii MW, Khalid MA, Yusof MAW, Mohamed N (2018) Marine radioactivity of Cs-134 and Cs-137 in the Malaysian Economic Exclusive Zone after the Fukushima accident. Journal of Radioanalytical and Nuclear Chemistry, 318(3): 2165-2172. [DOI:10.1007/s10967-018-6306-2]
16. Bakar ASA, Hamzah Z, Saat A (2017) Distribution of 137Cs in surface soil of Fraser's Hill, Pahang, Malaysia. AIP Conference Proceedings, 1799(030010). [DOI:10.1063/1.4972920]
17. Hamzah Z, Amirudin CY, Saat A (2012) Depth profile of 137 Cs fallout in soil in Cameron highlands. Malaysian Journal of Fundamental & Applied Sciences, 8(1): 18-23. [DOI:10.11113/mjfas.v8n1.118]
18. Muthu H, Kasi R, T subramaniam R, Baig S (2022) Radioactivity concentration and transfer factors of natural radionuclides 226Ra, 232Th, and 40K from peat soil to vegetables in Selangor, Malaysia. Nuclear Technology and Radiation Protection, 37: 57-64. [DOI:10.2298/NTRP2201057M]
19. Mohd Sanusi MS, Ramli A, Hashim S, Lee MH (2020) Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts. Ecotoxicology and Environmental Safety, 208: 111727. [DOI:10.1016/j.ecoenv.2020.111727]
20. Asaduzzaman K, Khandaker M, Amin Y, Zainuddin Z, Farook M, Bradley D (2015) Measurement of radioactivity and heavy metal levels in edible vegetables and their impact on Kuala Selangor communities of Peninsular Malaysia. Radiation Protection Dosimetry, 167(1-3): 165-170. [DOI:10.1093/rpd/ncv237] [PMID]
21. Yasir MS, Ab Majid A, Yahaya R (2007) Study of natural radionuclides and its radiation hazard index in Malaysian building materials. Journal of Radioanalytical and Nuclear Chemistry, 273(3): 539-541. [DOI:10.1007/s10967-007-0905-7]
22. UNSCEAR (2000) Sources and effects of ionizing radiation, volume II, effects. United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, 2000.
23. Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Vañó E, Einstein AJ, et al. (2011) International commission on radiological protection. ICRP publication, 120: 1-125.
24. Sing W, Hashim R, Ali F (2008) Compression Rates of Untreated and Stabilized Peat Soils. Electronic Journal of Geotechnical Engineering, 13.
25. Kaur R, Shikha D, Singh S, Mehta V (2020) Environmental radon, its exhalation rates and activity concentration of 226Ra, 232Th, and 40kK in Northern India. Nuclear Technology and Radiation Protection, 35: 268-282. [DOI:10.2298/NTRP2003268K]
26. Cruz da Silva R, Lopes JM, Barbosa da Silva L, Domingues AM, da Silva Pinheiro C, et al. (2020) Radiological evaluation of Ra-226, Ra-228 and K-40 in tea samples: A comparative study of effective dose and cancer risk. Applied Radiation and Isotopes, 165: 109326. [DOI:10.1016/j.apradiso.2020.109326] [PMID]
27. Naveed A, Tufail M, Ashraf M, Iqbal M (2005) Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiation Measurements Radiat Meas, 39: 11-14. [DOI:10.1016/j.radmeas.2004.02.016]
28. Helene OA, Vanin VR, Helmer RG, Schönfeld E, Dersch R, et al. (2007) Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications. International Atomic Energy Agency: Vienna, 210.
29. Ramadan AB, Diab HM, Monged MHE (2021) Soil-to-plant uptake of 137Cs and 85Sr in some Egyptian plants grown in Inshas region, Egypt. Journal of Environmental Radioactivity, 234: 106632. [DOI:10.1016/j.jenvrad.2021.106632] [PMID]
30. Najam LA and Younis SA (2015) Assessment of Natural Radioactivity Level in Soil Samples for Selected Regions in Nineveh Province (IRAQ). International Journal of Novel Research in Physics Chemistry & Mathematics, 2(2): 1-9.
31. Done L and Ioan M-R (2016) Minimum detectable activity in gamma spectrometry and its use in low level activity measurements. Applied Radiation and Isotopes, 114:28-32. [DOI:10.1016/j.apradiso.2016.05.004] [PMID]
32. Rani A and Singh S (2005) Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry. Atmospheric Environment, 39: 6306-6314. [DOI:10.1016/j.atmosenv.2005.07.050]
33. Ravisankar R, Raghu Y, Chandrasekaran A, Suresh Gandhi M, et al. (2016) Determination of natural radioactivity and the associated radiation hazards in building materials used in Polur, Tiruvannamalai District, Tamilnadu, India using gamma ray spectrometry with statistical approach. Journal of Geochemical Exploration, 163: 41-52. [DOI:10.1016/j.gexplo.2016.01.013]
34. DOSM (2021) Department of Statistics Malaysia Press Release Abridged Life Tables, Malaysia, 2019-2021. Dosm, (July):4.
35. Azhdarpoor A, Hoseini M, Shahsavani S, Shamsedini N, Gharehchahi E (2021) Assessment of excess lifetime cancer risk and risk of lung cancer due to exposure to radon in a middle eastern city in Iran. Radiation Medicine and Protection, 2(3): 112-116. [DOI:10.1016/j.radmp.2021.07.002]
36. Celik N, Damla N, Cevik U (2010) Gamma ray concentrations in soil and building materials in Ordu, Turkey. Radiation Effects and Defects in Solids, 165(1): 1-10. [DOI:10.1080/10420150903173270]
37. LaBrecque J (1994) Distribution of 137 Cs, 40 K, 238 U and 232 Th in soils from Northern Venezuela. Journal of radioanalytical and nuclear chemistry, 178(2): 327-336. [DOI:10.1007/BF02039726]
38. Miah FK, Roy S, Touchiduzzaman M, Alam B (1998) Distribution of radionuclides in soil samples in and around Dhaka city. Applied Radiation and Isotopes, 49(1-2): 133-137. [DOI:10.1016/S0969-8043(97)00232-7]
39. Gomez E, Garcias F, Casas M, Cerda V (1997) Determination of 137Cs and 90Sr in calcareous soils: geographical distribution on the Island of Majorca. Applied radiation and isotopes, 48(5): 699-704. [DOI:10.1016/S0969-8043(96)00330-2]
40. Higgy RH and Pimpl M (1998) Natural and man-made radioactivity in soils and plants around the research reactor of Inshass. Applied Radiation and Isotopes, 49(12): 1709-1712. [DOI:10.1016/S0969-8043(98)00009-8]
41. Tahir SNA, Jamil K, Zaidi JH, Arif M, Ahmed N, Ahmad SA (2005) Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazards. Radiation Protection Dosimetry, 113(4): 421-427. [DOI:10.1093/rpd/nch484]
42. Karakelle B, Öztürk N, Köse A, Varinliougbrevelu A, Erkol AY, Yilmaz F (2002) Natural radioactivity in soil samples of Kocaeli basin, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 254(3): 649-651. [DOI:10.1023/A:1021635415222]
43. Vukotić P, Borisov G, Kuzmič V, Antović N, Dapčević S, Uvarov V, Kulakov V (1998) Radioactivity on the Montenegrin coast, Yugoslavia. Journal of Radioanalytical and Nuclear Chemistry, 235(1-2): 151-157. [DOI:10.1007/BF02385954]
44. Sam AK, Ahmed MMO, El Khangi FA, El Nigumi YO, Holm E(1997) Assessment of terrestrial gamma radiation in Sudan. Radiation Protection Dosimetry, 71(2): 141-145. [DOI:10.1093/oxfordjournals.rpd.a032041]
45. Shenber MA (2001) Fallout 137Cs in soils from north western Libya. Journal of Radioanalytical and Nuclear Chemistry, 250(1): 193-194. [DOI:10.1023/A:1013224122677]
46. Al-Zahrani A (2001) Radioactivity levels in soil of three selected sites at and around Riyadh City. Journal of Radioanalytical and Nuclear Chemistry, 250(1) :93-95. [DOI:10.1023/A:1013224516065]
47. Wang C-J, Lai S-Y, Wang J-J, Lin Y-M (1997) Transfer of radionuclides from soil to grass in northern Taiwan. Applied Radiation and Isotopes, 48(2): 301-303. [DOI:10.1016/S0969-8043(96)00178-9]
48. Karunakara N, H M S, Narayana Y, Avadhani DN, Matt M, Siddappa K (2001) Cs-137 concentration in the environment of Kaiga of south west coast of India. Health physics, 81: 148-155. [DOI:10.1097/00004032-200108000-00008]
49. Emlinarti B (2003) Determination Of 137Cs Content In The Soil At Several Places In South Sumatra Province. P. 150 in Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine. Penentuan Kandungan 137Cs Dalam Tanah Di Propinsi Sumatera Selatan. Indonesia: Center for Research and Development of Radiation Safety and Nuclear Biomedicine, National Atomic Energy Agency, Jakarta - ID, 2003.
50. Chauymanee S, Kessaratikoon P, Boonkrongcheep R, Benjakul S, Youngchauy U (2013) Specific activity and radioactive contour map of anthropogenic radionuclide (Cs-137) in surface soil samples from Chumphon province, Thailand. Advanced Materials Research, 770: 108-111. [DOI:10.4028/www.scientific.net/AMR.770.108]
51. Nguyen T-N, Tran Q-T, Nguyen V-P, Le N-S, Phan S-H, Le X-T, Vuong T-T-H, (2020) Activity concentrations of Sr-90 and Cs-137 in seawater and sediment in the Gulf of Tonkin, Vietnam. Quinto M (ed). Journal of Chemistry, 2020: 8752606. [DOI:10.1155/2020/8752606]
52. Kurokawa K, Nakao A, Tsukada H, Mampuku Y, Yanai J (2019) Exchangeability of 137Cs and K in soils of agricultural fields after decontamination in the eastern coastal area of Fukushima. Soil Science and Plant Nutrition, 65(4): 401-408. [DOI:10.1080/00380768.2019.1622402]
53. Scott EM (2001) The Atlas of Caesium Deposition on Europe after the Chernobyl Accident. Journal of Environmental Radioactivity, 53(3): 423-424. [DOI:10.1016/S0265-931X(00)00146-6]
54. Wai K-M, Krstic D, Nikezic D, Lin T-H, Yu PKN (2020) External Cesium-137 doses to humans from soil influenced by the Fukushima and Chernobyl nuclear power plants accidents: a comparative study. Scientific Reports, 10(1): 7902. [DOI:10.1038/s41598-020-64812-9] []
55. Takahashi S (2014) Radiation monitoring and dose estimation of the Fukushima nuclear accident. Book Open Access© 2014. [DOI:10.1007/978-4-431-54583-5]
56. Maksimova S (2005) Radiation effects on the populations of soil invertebrates in Belarus. Equidosimetry-Ecological Standardization and Equidosimetry for Radioecology and Environmental Ecology. Springer, Pp. 155-1612005. [DOI:10.1007/1-4020-3650-7_19]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page