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ABSTRACT

Background: The existence of correlates between radiation and plasma metabolites in
rats might be affected by feeding conditions. Materials and Methods: The rats were
kept without food and water for a certain time before the blood was harvested on the
seventh day after X-ray irradiation at doses of 0 and 8 Gy. The plasma metabolites
were tested using Enzyme-Linked Immunosorbent Assay (ELISA). Results: Our results
showed that abrosia for 2 h before blood harvesting could increase the level of
detections of both interleukin-6 (IL-6) and glycine (Gly) in rats. Furthermore, abrosia
and meanwhile water deprivation for 2-4 h increased better the level of detections of
IL-6 and Gly in rats. Conclusion: The level of detections of biomarkers in the blood may
be more authentic and can better reflect the changes in the experimental animals
after stress when they are treated by both abrosia and water deprivation for 2 h

Keywords: Abrosia, water deprivation,
blood harvesting, level of detections of
plasma metabolites, irradiation.

INTRODUCTION

Along with the extensive application of atomic
energy and nuclear medicine, there is growing
concern over how radiation will affect the
environment and human health. To evaluate
radiological hazards, diagnose and treat various types
of radiation-related damage, novel methods that can
estimate biological exposure in a time-saving way are
urgently needed (1. Conventional biological methods
of estimating radiation dosage include chromosome
aberration analysis (#6), premature chromosome
condensation assay (7. 8), micronucleus assay (©-11),
somatic cell mutation detection (12), etc. Lately,
researchers at Columbia University established Rapid
Automated Biodosimetry Tool to measure the level of
YH2AX of leukocytes as a marker for DNA damage (13);
however, these methods have some drawbacks to
some extent, for example, time-consuming processes,
complicated procedures, high cost, etc. Consequently,
seeking novel ionizing radiation associated biological
markers and widely-applicable testing methods are
tasks of top priority, which will bring about
significant influences on both rescue efficiency
and therapeutic effect. Following genomics and
proteomics, metabolonomics has become an
emerging research hotspot (14-16). Detecting changes
in the amounts of amino acid metabolites or
cytokines in the blood (urine) samples of radiation

before blood harvesting.

victims directly with highly sensitive instruments
saves time, while being more sensitive, reliable, and
minimally invasive, and more widely applicable (17.18),
Biological markers can not only help to study
pathogenesis from a molecular perspective but also
have their unique advantages in terms of evaluating
accuracy and sensitivity for low-level damage in early
-stage, thus providing early warning and auxiliary
diagnosis (19. Collecting blood samples for early
diagnosis, physical examination, and prognosis
analysis has been well known and widely applied in
clinics for human medicine, in which some
examinations require the patient to have an empty
stomach in the morning to avoid interference arising
from dietary metabolism (20-24),

Although there have been reports on a dose
estimation method established by measuring the
content change of metabolites after radiation, a
search of the literature found that the feeding
conditions of animals before blood harvesting remain
unclear or simply were not investigated (18 25). To
judge whether feeding conditions before hemospasia
affect the serum biomarker levels of experimental
animals after radiation, we did cut off their food and/
or water supply before blood harvesting. Then the
levels of IL-6 (interleukin-6, inflammation factor) and
Gly (glycine, amino acid metabolites) were measured
for analysis and assessment. The aim of our current
work is to provide an experimental standard in
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animal blood harvesting for the measurement of
biomarkers in serum or plasma, to establish an ideal
radiation dosage biological model for radiation
protection or diagnose the disease with more authen-
tic, more accurate detection data.

MATERIALS AND METHODS

Irradiation experiment

The irradiation in this study was carried out by
the X-Rad 320 irradiator (USA) at the research
platform of radiation protection and emergency
technology in Southern Zhejiang, Wenzhou Medical
University. The dose rate was 2 Gy/min.

Animal grouping and treatment

Animal experiments conducted in current
experiment were approved by Wenzhou Medical
University Institutional Animal Use and Care
Committee. Sixty male SD rats (at an age of seven
weeks) were purchased from Zhejiang Vital River
Experimental Animal Technology Co. Ltd (Charles
River Lab. China). The rats were randomly divided
into two groups (n = 30) and were irradiated with 0
and 8 Gy.

Before blood samples were collected on the
seventh day after irradiation, 60 rats were divided
into twelve groups (five rats per group) following
different feeding treatments (table 1).

Table 1. Grouping and treatment of rats.

Unirradiated |Irradiated
Feeding treatment control group| group
(0 Gy) (8 Gy)
Free diet (continuous food and water
. A0 A8
supply) before hemospasia
Without food for 2 h, but continuous
. BO B8
water supply before hemospasia
Without food for 4 h, but continuous
. co c8
water supply before hemospasia
Without food for 8 h, but continuous
. DO D8
water supply before hemospasia
Without food and water for 2 h
. EO E8
before hemospasia
Without food and water for 4 h
. FO F8
before hemospasia

The blood samples of rats in each group were
harvested, using the tail-cutting method, into the
blood collection vessels containing anticoagulant, and
centrifuged at 3000 rpm for 5 min. The plasma was
collected and stored at -80 °C for subsequent use.

Measurement of serum metabolites

The rat IL-6 enzyme-linked immunosorbent
(ELISA) kit was purchased from Shanghai Shenggong
Co., Ltd; Rat Gly ELISA kits were purchased from
Wuhan Moshak Biotechnology Co. Ltd. The BioTek
800 (BioTek Company of the United States)
microplate meter was used to measure the OD value

of serum metabolites.

The levels of IL-6 and Gly were measured by
ELISA according to the manufacturer’s instructions
(i.e. we take out the kit and allow equilibration to
room temperature, dilute the working fluid and
standard fluid according to the instructions; 100 pL
of standard or test samples were added to each
reaction well, and plates were then incubated at 37 °C
for 90 min. The liquid was discarded, dumped and
dried, and 100 pL of biotin-labelled IL-6 antibody
working solution was added to each reaction well;
the plate was then blocked and incubated at 37 °C for
60 min; after discarding the liquid, we shook the
liquid dry, added 350 upL of wash liquid to each
reaction well, soaked it for 1-2 min, and shook it dry
with the wash liquid, which was repeated four times.
100 uL HRP of labelled streptavidin working solution
was added to the reaction well, then blocked and
incubated for 30 min at 37 °C . The plate was
re-washed five more times and 90 pL of color
developer was added to the reaction well, incubated
in the dark at 37 °C for 15 min before adding 50 pL
termination solution. (OD values were measured at
450 nm with a BioTek 800 microplate meter). The
comparison between groups was conducted
according to the OD values.

Statistics

Results are presented as mean * s.d (n = 5).
Statistical analyses were performed using Prism
software (GraphPad Software 9). The statistical
significance (P values) in mean values of two-sample
comparison was determined with Student’s t-test. A
value of P < 0.05 was considered statistically
significant (*).

RESULTS

Effect of abrosia on the level of detection of
metabolites in rat plasma
Abrosia for 2 h increased the level of detection of
IL-6

Figure 1 shows the relative level of IL-6 in plasma
of rats 7 days after irradiation. As illustrated in figure
1A, after abrosia for 2-4 h, the level of IL-6 in
irradiation groups was higher than those of
non-irradiated specimens although there was no
significant difference between them. While the
relative contents of IL-6 in both irradiated and
non-irradiation groups after abrosia for 2 h increase
in contrast with free diet groups (0 h group). Figure
1B shows that the level of IL-6 in the unirradiated
groups (0 Gy) abrosia for 2 h, and in 8-Gy irradiation
groups after being treated without food for 2-4 h
tended to increase, compared with those of free diet
groups, respectively. These results indicate that
abrosia for short-time (2 h) may slightly activate
inflammatory factor generation.
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Figure 1. Effect of abrosia before blood harvesting on the level
of detection of IL-6 in plasma of rats. (A) Comparison between

unirradiated and irradiated groups under the condition of

same feeding treatment. (B) Comparison among different

abrosia treatments under the same level of irradiation.

Abrosia for 2 h increased the measured level of Gly

Chromatographic analysis shows the contents of
nine kinds of amino acids increased including Gly in
the serum of rats exposed to y-rays (26). Here, Gly was
selected as a representative to estimate the effect of
abrosia on the detection of amino acid metabolites in
blood samples using the ELISA method.

Figure 2 shows the Gly levels of plasma in
irradiation groups increased compared with those of
non-irradiated groups respectively. Furthermore, the
abrosia for 2 h in the irradiated group significantly
increased the level of Gly, compared to the
non-irradiated specimens (figures 2A & 2B).
However, there was no significant increase when all
of the abrosia groups were compared with the free
diet group within the unirradiated groups (figure 2B).
These results suggest that short-term abrosia may
increase the level of detection of Gly in rats at 7 d
after irradiation.

Effect of treatment without food and water on the
level of detection of metabolites in rat plasma
Abrosia and water deprivation for 2-4 h increased
the level of detection of IL-6

Given that too long a water-deprivation test was
likely to have an unpredictable influence on the
physiological states of rats, only three time points
were set, namely 0, 2 and 4 h. Figure 3 demonstrates
the effect of treatment without food and water on the
level of detection of IL-6 in the plasma of rats 7 d
after irradiation. The levels of IL-6 in irradiation
groups were higher than those of the non-irradiated
groups when these rats were deprived for food and

water for 2-4 h, and there was a significant increase
between the irradiated and unirradiated groups in
the 4-h treatment (figure 3A).
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Figure 2. Effect of abrosia before blood harvesting on the level
of detection of Gly in plasma of rats. (A) Comparison between
unirradiated and irradiated groups under the same feeding
treatment. (B) Comparison among different abrosia
treatments under the same irradiation. * P < 0.05.
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Figure 3. Effect of food and water deprivation before blood
harvesting on the level of detection of IL-6 in plasma of rats.
(A) Comparison between unirradiated and irradiated groups
under the same feeding treatment. (B) Comparison among
different abrosia and water-deprivation treatments under the
same irradiation. * P < 0.05.
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Abrosia and water deprivation for 2 h increased
the level of detection of Gly

Figure 4 illustrates the changes in Gly level in the
plasma of rats after a certain period of abrosia and
water deprivation before blood harvest. Compared
with the non-irradiation control groups, the levels of
Gly in irradiated specimens increased when the rats
were deprived of food and water for 0 and 2 h.
Furthermore, there was a significant difference
between the irradiated and non-irradiated groups
after being treated without food and water for 2 h
(figure 4A). Furthermore, the levels of Gly in the
groups treated without food and water for both 2 and
4 h were higher than those of groups with a free diet
either in 0 or 8-Gy irradiation groups (figure 4B);
however, the level in the unirradiated group was a
little higher than that in the irradiated group under
the food and water deprivation for 4 h (figure 4A).
Thus, this result suggests that food and water
deprivation for 2 h was of benefit to improving the
level of detection of serum metabolites.
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Figure 4. Effect of food and water deprivation before blood
harvesting on the level of detection of Gly in plasma of rats.
(A) Comparison between unirradiated and irradiated groups
under the same feeding treatment. (B) Comparison among
different abrosia and water-deprivation treatments under the
same irradiation. * P < 0.05.

DISCUSSION

After being stimulated by irradiation, the
organism will produce a series of oxidative stress
reactions, catalyzing the changes of the small
molecule metabolites accordingly in the bodily fluid
(27. 28), Moreover, taking the body fluid (blood or

urine) as a biomarker source has certain advantages
in finding non-invasive indicators for radiation
damage (19, Studies relevant in metabolomics indicate
that various small molecule metabolites, including
amino acids, lipids and inflammatory factors, are of
great importance in analysis of radiation biological
effects (29-31). Although there are parts of previous
studies for using metabolomics to screen radiation
dose as the markers, there remains a paucity of
available radiation biomarkers (15.16,32),

Given that there are usually abrosia requirements
for taking blood samples from patients in a clinical
setting, it was supposed that feeding conditions
would also affect the plasma metabolite levels of the
experimental animals after irradiation. Therefore, in
this study, SD rats were under different feeding
conditions controlled before blood harvest, and then
the plasma levels of IL-6 and Gly were measured. IL-6,
produced mainly by lymphocytes, is a multifunctional
cytokine with a wide range of biological activities and
plays an important role in the body cytokine network
(33). Our results showed that IL-6 levels were
generally higher in the irradiated group compared to
the non-irradiated group. After 2 h of abrosia, the
relative content of IL-6 was increased in both the
irradiated and non-irradiated groups compared to the
free-diet group. Thus, abrosia can change the plasma
IL-6 levels in animals. Moreover, the irradiated group
presented higher IL-6 levels compared to the
non-irradiated group, while there was no statistical
difference therein. Combined with the water
deprivation treatment for 2-4 h, it was found that the
irradiated rats had significantly higher plasma IL-6
levels than those of the non-irradiated group.

UV stress was found to impair IL-6 / JAK2 / STAT3
signaling in cells and activate the inflammatory
mediators IL-6 and TNF-a, inducing apoptosis (34).
Dreyfuss et al found that the placental growth factor,
IL-6, and TNF-a significantly increase in irradiated
heart tissue and plasma of mice compared to
unirradiated controls at second and eighth weeks,
and decreased near to control levels at four weeks
post-radiotherapy 5. A study using cell model
showed that the IL-6 is one of the valid evaluation
indicators, in which it was higher in the 6-Gy
irradiation group than that in the 0-Gy group after
irradiation 36). Our results showed that the difference
between irradiated and non-irradiated groups was
not significant. Combined with the results of Dreyfuss,
we considered that IL-6 levels may fluctuate, first
increasing after irradiation, then decreasing at 7 d,
then increasing again.

After exploring the inflammatory factors
represented by IL-6, we turned our attention to Gly.
As an amino acid-like substance, Gly is also involved
in multiple metabolic pathways 7. 38), Radiation
causes an increase in the number of oxygen radicals
(39), while Gly can relieve oxidative stress damage
by regulating two enzymes, catalase and
superoxide dismutase 1 (#0.41). In UM-SCC-74B cells,
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the major alterations after irradiation were related to
serine and Gly metabolism, purine metabolism, and
nicotinic acid and nicotinamide metabolism (42),
Furthermore, Liu et al. combined gas
chromatography/time-of-flight mass spectrometry
with principal component analysis to evaluate
changes in serum metabolites levels in rats, and
found that all nine metabolites (including Gly) could
serve as potential biomarkers for the diagnosis of
radiation injury #3). In current experimental results,
we found that the Gly levels in plasma were elevated
in the irradiated group compared to the
non-irradiated group. Through the comparison of
different abrosia time treatments with free diet, Gly
levels were significantly increased in the irradiated
group subject to abrosia for 2 h, while the difference
between the unirradiated groups was not statistically
significant. Thus, it is reasonable to speculate that
diet may partially mask the effect of irradiation
stimulation on Gly metabolism in rat plasma.
Meanwhile, the same results were obtained in
abrosia and water deprivation for 2-h treatments,
and Gly levels were higher in all the groups with
treatments than in the free diet groups. Therefore,
abrosia and water deprivation for 2 h may improve
detection of the levels of serum metabolites.

In our study, how feeding conditions before blood
harvesting effect on the level of detection of certain
metabolites in rat plasma was explored. Compared
with conventional animal studies which concentrated
more on the effect of irradiation, we also attach
importance to the easily-neglected aspect, which may
provide a new idea for experimental standardization.
To clarify the effect of feeding conditions on the
levels of metabolites in rat plasma, a series of
experiments were conducted. The limitation of our
study is that we only measured the changes of IL-6
and Gly in plasma, which constrained our findings
from being generally applicable to other body fluids
such as tissue fluid and other plasma metabolites,
thus further research into various body fluids and
other types of plasma metabolites is warranted.

CONCLUSION

Above all, based on our experimental results, it
can be concluded that abrosia and water deprivation
for 2 h before blood harvesting is a better way of
detecting the level of biomarker in serum of plasma,
and can really reflect the effect of stress such as
irradiation on living creatures.
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