:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 117-124 Back to browse issues page
Radioactive heat production rate and excess lifetime cancer risk of sand from two major rivers in India – A comparative study
S. Murugesan , S. Ravichandran
Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamilnadu, India , binunair.phd@gmail.com
Abstract:   (702 Views)
Background: Rivers are having a major role in crop cultivation, power generation, and sand used for mining and construction. Materials and Methods: The gamma ray spectrometer was used to estimate uranium, thorium, and potassium (238U, 232Th, 40K), and its average is tabulated. Related parameters like absorbed dose (D), Annual Effective Dose Equivalent (AE), and also hazard indices (H) to assess radiation exposure. Additional parameters like radium equivalent (Req), radioactive heat production (RHP), Excess Lifetime Cancer Risk (ELCR), Alpha (Iα), and Gamma Index (Ig), Annual Gonadal dose (AGD) are computed and correlated with the related parameters to understand radioactive penetration to the living things. Results: This study exhibits the radioactive contaminants in Cauvery are in control by comparing to the world average except for C20. The average radiological risk of the Palar river is slightly higher and site no.6 shows three times the world average. Conclusion: This radioactive pollution can cause serious health effects for the people living in and around those two sites (C20 and P7) who are highly exposed to radiation, which leads to harmful effects on living things.
Keywords: Environmental radioactivity, natural radionuclides, radiological dose parameters, radiological hazardous parameters.
Full-Text [PDF 1139 kb]   (745 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Ramasamy V, Murugesan S, Mullainathan S, Chaparro MAE (2006) Magnetic characterization of recently excavated sediments of Cauvery River, Tamilnadu, India. Pollut Res, 25: 357-362.
2. Agrawal US, Wanjari SP, Naresh DN (2017) Characteristic study of geopolymer fly ash sand as a replacement to natural river sand. Constr Build Mater, 150, 681-688. [DOI:10.1016/j.conbuildmat.2017.06.029]
3. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut, 152: 686-692. [DOI:10.1016/j.envpol.2007.06.056] [PMID]
4. Zhang M-K, Liu Z-Y, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci Plant Anal, 41: 820-831. [DOI:10.1080/00103621003592341]
5. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York.
6. Faweya EB and Adewumi T (2021) Excessive-life time cancer risks due to concentration of radionuclides and quantification of contamination of sediments from dredged portion of Niger River Nigeria. Int J Radiat Res, 19(2): 309-316. [DOI:10.52547/ijrr.19.2.8]
7. Ali MMM, Zhao H, Rawashdeh A, Mohammed YA, Al Hassa M (2021) Assessment of radiation hazard indices for sand samples from Ma'rib in Yemen. Int J of Radiat Res, 19(3): 615-621. [DOI:10.52547/ijrr.19.3.615]
8. Daulta R, Garg VK, Singh B (2019) Natural radioactivity in soil, associated radiation exposure and cancer risk to population of Eastern Haryana, India. Journal of the Geological Society of India, 94(5): 525-532. [DOI:10.1007/s12594-019-1350-2]
9. OECD (1979) Exposure to radiation from the natural radioactivity in building materials. Reported by a group of experts of the OECD, Nuclear Energy Agency, Paris.
10. European Commission (2000) Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; Radiation Protection 112; Directorate-General Environment, Nuclear Safety and Civil Protection: Luxembourg, Belgium,.
11. Krishnamoorthy N, Mullainathan S, Murugesan S (2013) Evaluation of natural radioactivity in rocks of Nilgiri hills and their radiation hazard to mankind. International Journal of Low Radiation, 9(1): 2013. [DOI:10.1504/IJLR.2013.054172]
12. Gbenu ST, Oladejo, OF, Olukotun, SF, Makinde, OW, Fasasi, MK, Balogun, FA (2016) Assessment of radioactivity and radiological hazards in commercial ceramic tiles used in Ife-Central, local government area of Osun State, Nigeria. Egypt J Basic Appl Sci, 3: 377-382. [DOI:10.1016/j.ejbas.2016.08.002]
13. Turhan Ş, Baykan UN, Şen K, (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J Radiol Prot, 28: 83-89. [DOI:10.1088/0952-4746/28/1/005] [PMID]
14. Murugesan S, Mullainathan S, Ramasamy V (2015) Natural radioactivity and hazardous index of major South Indian river sediments. Int J Low Radiat, 10: 14-33. [DOI:10.1504/IJLR.2015.071761]
15. Murugesan S, Mullainathan S, Ramasamy V, Meenakshisundaram V (2011) Radioactivity and radiation hazard assessment of Cauvery River, Tamilnadu, India. Int J Radiat Res, 8: 211-222.
16. Beretka J and Mathew PJ (1985) Natural radioactivity of australian building materials, industrial wastes and by-products. Health Phys, 48: 87-95. [DOI:10.1097/00004032-198501000-00007] [PMID]
17. Ravisankar R, Sivakumar S, Chandrasekaran A, Prince Prakash Jebakumar J, et al. (2014) Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu, India with statistical approach. Radiat Phys Chem, 103: 89-98. [DOI:10.1016/j.radphyschem.2014.05.037]
18. Krishnamoorthy N, Kerur BR, Mullainathan S, Marcos AE Chaparro, Murugesan S, et al. (2018) Behavior of natural radionuclides, radiological hazard parameters, and magnetic minerals in rock samples of Kolli hills, Eastern Ghats, India. Int J Environ Res, 12: 399-412. [DOI:10.1007/s41742-018-0098-7]
19. Recommendations of the International Commission on Radiological Protection 1991. ICRP Publication 60. Ann. ICRP, 21: (1-3). [DOI:10.1016/0146-6453(91)90066-P]
20. Chandrasekaran A, Ravisankar R, Rajalakshmi A, Eswaran P, Vijayagopal P, Venkatraman B (2015) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochim Acta - Part A Mol Biomol Spectrosc, 136: 1734-44. [DOI:10.1016/j.saa.2014.10.075] [PMID]
21. Senthilkumar RD, Narayanaswamy R (2016) Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J Radiat Res Appl Sci, 9: 449-456. [DOI:10.1016/j.jrras.2016.07.002]
22. Szabó Zs, Völgyesi P, Nagy HÉ, Szabó Cs, Kis Z, Csorba O (2013) Radioactivity of natural and artificial building materials - a comparative study. J Environ Radioact, 118: 64-74. [DOI:10.1016/j.jenvrad.2012.11.008] [PMID]
23. Murugesan S, Mullainathan S, Ramasamy V, Meenakshisundaram V (2016) Environmental radioactivity, magnetic measurements and mineral analysis of major South Indian river sediments. J Mater Environ Sci, 7: 2375-2388.
24. Haenel R, Rybach L, Stegena L (1988) Handbook of terrestrial heat-flow density determination, handbook of terrestrial heat-flow density determination. Book preview 52/491 pages available. [DOI:10.1007/978-94-009-2847-3]
25. Ramasamy V, Suresh G, Rajkumar P, Murugesan S, Mullainathan S, Meenakshisundaram V (2012) Reassessment and comparison of natural radioactivity levels in relation to granulometric contents of recently excavated major river sediments. J Radioanal Nucl Chem, 292: 381-393. [DOI:10.1007/s10967-011-1486-z]
26. Isinkaye MO and Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment ofOguta Lake, South East Nigeria. J Radiat Res Appl Sci, 8: 459-469. [DOI:10.1016/j.jrras.2015.05.001]
27. SureshGandhi M, Ravisankar R, Rajalakshmi A, Sivakumar S, Chandrasekaran A, Pream Anand D (2014) Measurements of natural gamma radiation in beach sediments of north east coast of Tamilnadu, India by gamma ray spectrometry with multivariate statistical approach. J Radiat Res Appl Sci, 7: 7-17. [DOI:10.1016/j.jrras.2013.11.001]
28. Montes ML, Mercader RC, Taylor MA, Runco J, Desimoni J (2012) Assessment of natural radioactivity levels and their relationship with soil characteristics in undisturbed soils of the northeast of Buenos Aires province, Argentina. J Environ Radioact, 105: 30-39. [DOI:10.1016/j.jenvrad.2011.09.014] [PMID]
29. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot, 57: 109-119. [DOI:10.1016/S0969-8043(01)00262-7] [PMID]
30. Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radioactivity in some major rivers of coastal Karnataka on the southwest coast of India. J Environ Radioact, 80: 25-33. [DOI:10.1016/j.jenvrad.2007.02.003] [PMID]

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page