:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 147-151 Back to browse issues page
Effectiveness of oesophageal gastric junction tumour motion with and without a pneumatic abdominal compression belt in the era of precise image-guided radiation therapy
N. Li , T-T Li , X-Y Xiang , X-D Liu , Y. Tang , Y-X Li , J-M Shi , W-Y Liu , H. Ren , H. Fang , Y. Tang , B. Chen , N-N Lu , J. Hao , S-N Qi , S-L Wang , Y-P Liu , Y-W Song , J. Jin
Abstract:   (493 Views)
Background: To investigate the effect of a pneumatic abdominal compression belt (PACB) on suppressing the movement of primary lesions in the oesophageal gastric junction (EGJ). Materials and Methods: Titanium clips A and B were placed on the upper and lower edges of the tumour grossly in 10 patients by using gastroscopy before preoperative chemoradiotherapy. Four sets of images of clips were obtained by 4DCT in each patient with and without PACB. Nine sets of CBCT images were obtained from each patient for analysis. Paired t tests and independent t tests were used to test for differences. Results: In the cranio-caudal (CC) directions, the internal motion of clip B was smaller with PACB than without PACB (P=0.000). The interfraction motion of clip B in the left-right (LR), anterior-posterior (AP) and CC directions was smaller with than without PACB (P=0.002, 0.002 and 0.005). We determined that 0.9, 0.9 and 0.9 cm ITV margins in the LR, AP and CC directions are suggested for EGJ lesions with PACB to better cover the tumour movements. Conclusion: A pneumatic abdominal compression belt can reduce the intra- and interfraction movements of EGJ tumours during preoperative radiotherapy.
Keywords: Oesophageal gastric junction tumour, pneumatic abdominal compression belt, neo-adjuvant radiotherapy
Full-Text [PDF 820 kb]   (560 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Chen W (2015) Cancer statistics: updated cancer burden in China. Chin J Cancer Res, 27(1): 1.
2. Miao R, Li Z, Wu A (2018) Data report of China Gastrointestinal Cancer Surgery :union: (2014-2016). Chinese Journal of Practical Surgery, 38(1): 4.
3. Coccolini F, Nardi M, Montori G, Ceresoli M, Celotti A, Cascinu S, et al. (2018) Neoadjuvant chemotherapy in advanced gastric and esophago-gastric cancer. Meta-analysis of randomized trials. Int J Surg, 51: 120-7. [DOI:10.1016/j.ijsu.2018.01.008] [PMID]
4. Akce M, Jiang R, Alese OB, Shaib WL, Wu C, Behera M, et al. (2019) Gastric squamous cell carcinoma and gastric adenosquamous carcinoma, clinical features and outcomes of rare clinical entities: a National Cancer Database (NCDB) analysis. J Gastrointest Oncol, 10(1): 85-94. [DOI:10.21037/jgo.2018.10.06] [PMID] []
5. Tang Y, Cui W, Wang X, Jin J, Li S, Li N, et al. (2017) Motion of gastroesophageal junction adenocarcinoma during preoperative radiotherapy. Chinese Journal of Radiation Oncology, 26(5): 631.
6. Liu W, Jin J, Tian Y, Han W, Ren H, Fang H, et al. (2015) Four-dimensional CT-based evaluation of intrafractional and interfractional anastomosis motion during postoperative radiotherapy in gastric cancer: a prospective study. Chinese Journal of Radiation Oncology, 24(2): 163-7.
7. Watanabe M, Isobe K, Uno T, Harada R, Kobayashi H, Ueno N, et al. (2011) Intrafractional gastric motion and interfractional stomach deformity using CT images. J Radiat Res, 52(5): 660-5. [DOI:10.1269/jrr.11018] [PMID]
8. Hugo GD, Yan D, Liang J (2007) Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol, 52(1): 257-74. [DOI:10.1088/0031-9155/52/1/017] [PMID]
9. Aggarwal A, Chopra S, Paul SN, Engineer R, Srivastava SK (2014) Evaluation of internal target volume in patients undergoing image-guided intensity modulated adjuvant radiation for gastric cancers. The British journal of radiology, 87(1033): 20130583. [DOI:10.1259/bjr.20130583] [PMID] []
10. van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol, 14(1): 52-64. [DOI:10.1053/j.semradonc.2003.10.003] [PMID]
11. Jin P, van der Horst A, de Jong R, van Hooft JE, Kamphuis M, van Wieringen N, et al. (2015) Marker-based quantification of interfractional tumor position variation and the use of markers for setup verification in radiation therapy for esophageal cancer. Radiotherapy and oncology. Journal of the European Society for Therapeutic Radiology and Oncology, 117(3): 412-8. [DOI:10.1016/j.radonc.2015.10.005] [PMID]
12. Wang J, Lin SH, Dong L, Balter P, Mohan R, Komaki R, et al. (2012) Quantifying the interfractional displacement of the gastroesophageal junction during radiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys, 83(2): e273-80. [DOI:10.1016/j.ijrobp.2011.12.048] [PMID] []
13. Lax I, Blomgren H, Naslund I, Svanstrom R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol, 33(6): 677-83. [DOI:10.3109/02841869409121782] [PMID]
14. Wunderink W, Mendez Romero A, de Kruijf W, de Boer H, Levendag P, Heijmen B (2008) Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. Int J Radiat Oncol Biol Phys, 71(3):907-15. [DOI:10.1016/j.ijrobp.2008.03.010] [PMID]
15. Negoro Y, Nagata Y, Aoki T, Mizowaki T, Araki N, Takayama K, et al. (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys, 50(4): 889-98. [DOI:10.1016/S0360-3016(01)01516-4]
16. Herfarth KK, Debus J, Lohr F, Bahner ML, Fritz P, Hoss A, et al. (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys, 46(2): 329-35. [DOI:10.1016/S0360-3016(99)00413-7]
17. Hof H, Herfarth KK, Munter M, Essig M, Wannenmacher M, Debus J (2003) The use of the multislice CT for the determination of respiratory lung tumor movement in stereotactic single-dose irradiation. Strahlentherapie und Onkol, 179(8): 542-7. [DOI:10.1007/s00066-003-1070-8] [PMID]
18. Lovelock DM, Zatcky J, Goodman K, Yamada Y (2014) The effectiveness of a pneumatic compression belt in reducing respiratory motion of abdominal tumors in patients undergoing stereotactic body radiotherapy. Technol Cancer Res Treat, 13(3): 259-67. [DOI:10.7785/tcrt.2012.500379] [PMID]
19. West K, Russo M, Brown E, Barry T, Hargrave C, Pryor D (2018) Evaluation of kidney motion with and without a pneumatic abdominal compression belt: Considerations for stereotactic radiotherapy. Journal of Medical Imaging and Radiation Oncology, 62(1): 128-32. [DOI:10.1111/1754-9485.12681] [PMID]
20. Raphael JC, Varghese MK, Gopu PG, Venkatesan K, Jimson AD, Febin A (2018) Effectiveness of abdominal compression in reducing internal target motion during conformal radiotherapy for carcinoma stomach - A pilot study. Indian J Cancer, 55(3): 226-9. [DOI:10.4103/ijc.IJC_95_18] [PMID]
21. Van Gelder R, Wong S, Le A, Podreka A, Briggs A, Haddad C, et al. (2018) Experience with an abdominal compression band for radiotherapy of upper abdominal tumours. J Med Radiat Sci, 65(1): 48-54. [DOI:10.1002/jmrs.254] [PMID] []



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page