:: Volume 21, Issue 2 (4-2023) ::
Int J Radiat Res 2023, 21(2): 177-187 Back to browse issues page
NFκB, p53, p21 interacts with DNA damage indicators & Stat3 protein in inducing the radio-modulatory potential of Ethyl cinnamate on HepG2 and BRL3A cells
A. Dutta , S. Mukherjee , M. Bhattacharyya , A. Chakraborty
UGC-DAE Consortium for Scientific Research, Kolkata Centre LB-8, Sector-III, Salt Lake, Kolkata-700106, India , anindita.iuc@gmail.com
Abstract:   (1515 Views)
Background: Ethyl cinnamate (Ethyl (2E)-3-phenylprop-2-enoate) is an aromatic compound of cinnamon. According to the Indian Ayurvedic medical system, cinnamon has been used to treat various diseases.The current study examines the potential of ethyl cinnamate (EC) in modulating radiation responses in cancerous (HepG2) and normal (BRL-3A) cells. Material & Method: HepG2 and BRL3A cells were pre-treated with EC (75 µg/ml) for 24 hours before being subjected to a single 7.5 Gy dose of γ-ray. By using flow cytometry and western blotting, the primarysurvival pathways (PI3-AKT, JAK-STAT, MAPK & JNK), cell cycle inhibitors (p53 & p21), DNA damage indicators (ATM, ATR, γ-H2AX, cleaved PARP), anti-angiogenic TIMP2 and angiogenic factor MMP9 were analysed. The activity of the catalase enzyme was assessed by UV-Visible spectrophotometry. Results: The complex effects of EC on the suppression of pro-survival and anti-apoptotic proteins such as p-JNK, p-JAK2, p-STAT3, and p-p38MAPK results in enhanced radio-sensitization and radiation-induced cancer cell killing. The radio-response is potentiated by EC’s ability to suppress downstream effector proteins such as p21, p-p53, and MMPs and block radiation-triggered p-NF-κB signalling pathways. Additionally, EC effectively enhanced the radio-induced DNA damage in HepG2 cells by stimulating p-ATM, p-ATR, γ-H2AX and PARP cleavage. However, in BRL-3A cells, EC significantly reduced radiation-induced DNA damage. Conclusion: The potential of EC as a radio-sensitizer in HepG2 cells and a radio-protector in BRL3A cells was observed in this investigation. Based on the elucidated molecular mechanisms, safety profile, and low cost, EC might be considered a promising adjuvant to enhance radio-therapeutic efficacy in cancer treatment.
Keywords: Radio-sensitization, radio-protection, phytocomponents, ethyl cinnamate, cancer cells, normal cells.
Full-Text [PDF 1719 kb]   (836 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Morgan WF and Sowa MB (2005) Effects of ionizing radiation in nonirradiated cells. PNAS, 102(40): 14127-14128. [DOI:10.1073/pnas.0507119102] [PMID] []
2. Kinoshita K, Ishimine H, Shiraishi K, Kato H, Doi K, et al. (2014) Cell and tissue damage after skin exposure to ionizing radiation: Short- and long-term effects after a single and fractional doses. Cells Tissues Organs, 200: 240-252. [DOI:10.1159/000435809] [PMID]
3. Burgio E, Piscitelli P, Migliore L (1971) Ionizing radiation and human health: Reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. International J of Environ Res and Pub Health, 15(9): 1971. [DOI:10.3390/ijerph15091971] [PMID] []
4. Mozdarani H (2012) Biological complexities in radiation carcinogenesis and cancer radiotherapy: Impact of New Biological Paradigms. Genes, 3(1): 90-114. [DOI:10.3390/genes3010090] [PMID] []
5. Madan R (2020) Radiosensitizers and radioprotectors. In: Practical radiation oncology, (Mallick S., Rath G., Benson R, eds.). Springer Singapore, 179-183. [DOI:10.1007/978-981-15-0073-2_29]
6. Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, et al. (2021) Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct, 12: 5204-5218. [DOI:10.1039/D1FO00525A] [PMID]
7. Rates SMK (2001) Plants as source of drugs. Toxicon, 39(5): 603-613. [DOI:10.1016/S0041-0101(00)00154-9]
8. Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Tech Res, 3: 200-201. [DOI:10.4103/2231-4040.104709] [PMID] []
9. Greenwell M and Rahman PKSM (2015) Medicinal plants: Their use in anticancer treatment. Int J Pharm Sci Res, 6(10): 4103-4112.
10. Kavishankar GB, Lakshmidevi N, Mahadeva Murthy S, Prakash HS, Niranjana SR (2011) Diabetes and medicinal plants-A review. Int J Pharm Biomed Sci, 2(3): 65-80.
11. Mannangatti P, Naidu KN (2016) Indian herbs for the treatment of neurodegenerative disease. In: The benefits of natural products for neurodegenerative diseases. (Essa M., Akbar M., Guillemin G, eds.), Springer, Switzerland. Advances in Neurobiology, 12: 323-336. [DOI:10.1007/978-3-319-28383-8_17] [PMID]
12. Pohl F and Kong Thoo Lin P (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In-vitro, in-vivo and clinical trials. Molecules, 23(12): 3283. [DOI:10.3390/molecules23123283] [PMID] []
13. Juanjuan Yi, Jiaqing Zhu, Changcheng Zhao, Qiaozhen Kang, et al. (2021) Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. FoodFunct, 12: 5204-5218. [DOI:10.1039/D1FO00525A] [PMID]
14. Reya T, Morrison S, Clarke M, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414: 105-111. [DOI:10.1038/35102167] [PMID]
15. Sagan L (1967) On the origin of mitosing cells. J of TheoretBiol, 14(3): 225-274. [DOI:10.1016/0022-5193(67)90079-3]
16. Mair W (2010) How normal cells can win the battle for survival against cancer cells. PLoSBiol, 8(7): e1000423. [DOI:10.1371/journal.pbio.1000423] [PMID] []
17. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, et al. (1997) Gene expression profiles in normal and cancer cells. Science, 276(5316): 1268-1272. [DOI:10.1126/science.276.5316.1268] [PMID]
18. MYallapu M, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res, 3: 11. [DOI:10.1186/1757-2215-3-11] [PMID] []
19. Li M, Zhang Z, Hill DL, Wang H, Zhang R (2007) Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res, 67: (5) 1988-1996. [DOI:10.1158/0008-5472.CAN-06-3066] [PMID]
20. da Costa Araldi IC, Bordin FPR, Cadoná FC, Barbisan F, et al. (2018) The in-vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem-Biol Interact, 282: 85-92. [DOI:10.1016/j.cbi.2018.01.013] [PMID]
21. Tan Y, Wei X, Zhang W, Wang X, Wang K, et al. (2017) Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Onco Rep, 37: 1833-1841. [DOI:10.3892/or.2017.5413] [PMID]
22. Baek SH, Ko J-H, Lee H, Jung J, Kong M, JW Lee, J Lee, et al. (2016) Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 23(5): 566-577. [DOI:10.1016/j.phymed.2016.02.011] [PMID]
23. Sebastià N, Montoro A, Hervás D, Pantelias G, Hatzi VI, et al. (2014) Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay. Mutat Res /Fundament and MolMech of Mutagen, 766-767: 49-55. [DOI:10.1016/j.mrfmmm.2014.05.006] [PMID]
24. Karthikeyan S, Kanimozhi G, Prasad NR, Mahalakshmi R (2011) Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in-vitro. Toxicology in-Vitro, 25(7): 1366-1375. [DOI:10.1016/j.tiv.2011.05.007] [PMID]
25. Rajendra Prasad N, Srinivasan M, Pugalendi KV, Venugopal PM (2006) Protective effect of ferulic acid on γ-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutat Res /Gen Toxicol and Environ Mutagen, 603(2): 129-134. [DOI:10.1016/j.mrgentox.2005.11.002] [PMID]
26. Jiao Y, Ouyang HL, Jiang YJ, Kong XZ, et al. (2015) Toxic effects of ethyl cinnamate on the photosynthesis and physiological characteristics of chlorella vulgaris based on chlorophyll fluorescence and flow cytometry analysis. Sci World J, 2015: 107823. [DOI:10.1155/2015/107823] [PMID] []
27. Gao LL, Guo PY, Su GM and Wei YF (2013) Effects of allelochemicals ethyl cinnamate on the growth and physiological characteristics of Chlorella pyrenoidosa. Huan Jing KeXue, 34(1): 156-62.
28. Zhang B, Lv C, Li W, Cui Z, Chen D, et al. (2015) Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptescuniculi: synthesis, bioactivity and structure-activity relationship. Chem Pharm Bull, 63(4): 255-62. [DOI:10.1248/cpb.c14-00765] [PMID]
29. Dubey NK, Tiwari TN, Mandin D, Andriamboavonjy H, Chaumont JP (2000) Antifungal properties of Ocimumgratissimum essential oil (ethyl cinnamate chemotype). Fitoterapia, 71(5): 567-9 [DOI:10.1016/S0367-326X(00)00206-9]
30. Beers Jr. R and Sizer I (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J BiolChem, 195(1): 133-40. [DOI:10.1016/S0021-9258(19)50881-X]
31. Mashimo M, Onishi M, Uno A, Tanimichi A, Nobeyama A, et al. (2021) The 89-kDa PARP1 cleavage fragment serves as a cytoplasmicPAR carrier to induce AIF-mediated apoptosis. J Biol Chem, 296: 100046. [DOI:10.1074/jbc.RA120.014479] [PMID] []
32. Grasso R, Dell'Albani P, Carbone C, Spatuzza M, et al. (2020) Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Scientific Reports, 10: 4680. [DOI:10.1038/s41598-020-61670-3] [PMID] []
33. Malik A, Afaq S, Shahid Kafil AM, Assiri A (2011) Influence of ellagic acid on prostate cancer cell proliferation: A caspase-dependent pathway. Asian Pacific Journal of Tropical Medicine, 4(7): 550-555. [DOI:10.1016/S1995-7645(11)60144-2]
34. Marechal A and Zou L (2013) DNA damage sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol, 5: a012716. [DOI:10.1101/cshperspect.a012716] [PMID] []
35. Chen Y-A, Lien H-M, Kao M-C, Lo U-G, Lin L-C, Lin C-J, et al. (2017) Sensitization of radioresistant prostate cancer cells by resveratrol isolated from arachishypogaeastems. PLoS ONE, 12(1): e0169204. [DOI:10.1371/journal.pone.0169204] [PMID] []
36. Sahu RP, Batra S, SK Srivastava (2009) Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. British J Cancer, 100: 1425 - 1433. [DOI:10.1038/sj.bjc.6605039] [PMID] []
37. Kuo LJ and Yang L-X (2008) γ-H2AX - a novel biomarker for DNA double-strand breaks. In-vivo, 22: 305-310.
38. Schwarz K, Dobiasch S, Nguyen L, Schilling D, Combs SE (2020) Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines. Scientific Report, 10: 3815. [DOI:10.1038/s41598-020-60765-1] [PMID] []
39. He G, Siddik ZH, Huang Z, Wang R, Koomen J, et al. (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene, 24(18): 2929-43. [DOI:10.1038/sj.onc.1208474] [PMID]
40. Jang JY, Kang MY, Lim YK, Kim JH, Kim JK (2017) Effects of quercetin on ionizing radiation-induced cellular responses in HepG2 cells. Int J Radiat Res, 15(3): 229-239.
41. Li, T-M, Chen G-W, Su C-C, Lin J-G, Yeh C-C et al. (2005) Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Research, (25): 971-9.
42. Valdameri G, Trombetta-Lima M, Worfel PR, Pires ARA, Martinez GR, et al. (2011) Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem-Biol Interact, 193: 180-189. [DOI:10.1016/j.cbi.2011.06.009] [PMID]
43. Glorieux C, Marcelo Sandoval J, Dejeans N, Nonckreman S, Bahloula K, et al. (2018) Evaluation of potential mechanisms controlling the catalase expression in breast cancer cells. Oxid Med Cell Longev, 10: 1155/2018/5351967. [DOI:10.1155/2018/5351967] [PMID] []
44. Subburayan Karthikeyan, Govindhasamy Kanimozhi, Nagarajan Rajendra Prasad, Rajendran Mahalakshmi(2011) Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in-vitro. Toxicology In-Vitro, 25: 1366-1375. [DOI:10.1016/j.tiv.2011.05.007] [PMID]
45. Wagner E and Nebreda A (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer, 9: 537-549. [DOI:10.1038/nrc2694] [PMID]
46. Tang Y, Abe N, Qi H, Zhu B, et al. (2014) Tea catechins inhibit cell proliferation through hydrogen peroxide- dependent and -independent pathways in human t lymphocytic leukemia Jurkat cells. Food Science and Technology Research, 20 (6): 1245_1249. [DOI:10.3136/fstr.20.1245]
47. Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y (2017) JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Experimental and Therapeutic Medicine, 14: 593-599. [DOI:10.3892/etm.2017.4529] [PMID] []
48. Thomas S, Snowden J, Zeidler M, et al. (2015) The role of JAK/STAT signalling in the pathogenesis, prognosis, and treatment of solid tumours. Br J Can, 113: 365-371. [DOI:10.1038/bjc.2015.233] [PMID] []
49. Zhong L-X, Zhang Y, Wu M-L Liu, Y-N, Zhang P, et al. (2016) Resveratrol and STAT inhibitor enhance autophagy in ovarian cancer cells. Cell Death Discovery, 2: 15071. [DOI:10.1038/cddiscovery.2015.71] [PMID] []
50. Madan E, Prasad S, Preeti R (2008) Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells. Biochemical and Biophysical Research Communications, 377: 1232-1237. [DOI:10.1016/j.bbrc.2008.10.158] [PMID]
51. Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. CanImmunol Res, 2(9): 823-830. [DOI:10.1158/2326-6066.CIR-14-0112] [PMID] []
52. Xia L, Tan S, Zhou Y, Lin J, Yang H, Oyang L, et al. (2018) Role of the NFκB-signaling pathway in cancer. Onco Target and Ther, 11: 2063-2073. [DOI:10.2147/OTT.S161109] [PMID] []
53. Zinatizadeh Md R, Schock B, Chalbatani GM, Zarandi PK, et al. (2021) The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases, 8: 287-297. [DOI:10.1016/j.gendis.2020.06.005] [PMID] []
54. Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, et al. (2015) Factor, and Snorri S. Curcumin effectively inhibits oncogenic NF-kB signaling and restrains stemness features in liver cancer. Thorgeirsson J Hepatol, 63(3): 661-669. [DOI:10.1016/j.jhep.2015.04.018] [PMID] []
55. Peeney D, Jensen SM, Castro NP, Kumar S, Noonan S, Handler C, et al. (2020) TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis, 41(3): 313-325. [DOI:10.1093/carcin/bgz172] [PMID] []
56. Wang W, Li D, Xiang L, Lv M, Tao L, Ni T, et al. (2019) TIMP-2inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. Cell Adhesion & Migration, 13(1): 272-283. [DOI:10.1080/19336918.2019.1639303] [PMID] []
57. ShiJ, Zhang X, Shi T, Li H (2017) Antitumor effects of curcumin in human bladder cancer in-vitro. Oncology Letters, 14: 1157-1161. [DOI:10.3892/ol.2017.6205] [PMID] []

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (4-2023) Back to browse issues page