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Investigating geometric and dosimetric accuracy of auto-
segmentation contours in stereotactic body radiation therapy 

for early peripheral non-small cell lung cancer 

INTRODUCTION 

Although computer techniques have been applied 
in radiotherapy, the segmentation of organs at risk 
(OAR) is still time-consuming and labor-intensive 
because radiotherapy practitioners need to manually 
contour the outlines of OAR and repeat the                     
segmentation operations again and again for different 
patients. One of the main problems is that different 
radiation oncologists may have different                    
understandings of OAR segmentation. This inevitably 
causes inter-observer variability during the                
segmentation of OAR and hinders the standardization 
of radiotherapy (1-5). Existing studies have shown that 
lung cancer is a primary malignant tumor affecting 
the health of people worldwide because of high      

morbidity and mortality. The risk of lung cancer is 
related to age, smoking, environmental pollution, and 
many other factors (6-7). With the advancement of the 
stereotactic body radiation therapy (SBRT)                   
technology (8-10), many patients with early non-small 
cell lung cancer (NSCLC) have been treated with 
SBRT. The increase in the survival rate is making 
SBRT a viable option for an increasing number of 
NSCLC patients. 

At present, there are numerous clinical                     
procedures related to radiotherapy that occupy the 
working time of radiation oncologists, leaving them 
with less time to focus on the manual segmentation of 
OAR. Considering this difficulty, an accurate auto-
segmentation technique that would assist                 
radiotherapy physicians to complete the                    
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ABSTRACT 

Background: The geometric and dosimetric accuracy of auto-segmentation 
OAR are of key importance for radiation oncologists who use auto-
segmentation instead of manual segmentation. This study investigates the 
geometric and dosimetric accuracy of auto-segmentation OAR for early 
peripheral NSCLC using an artificial intelligence cloud online platform (AI 
Contour). Materials and Methods: AI Contour was used to perform the contour 
segmentation of OAR on twenty patients with early peripheral NSCLC, to 
evaluate geometric and dosimetric accuracies. Manual segmentation and 
auto-segmentation were performed to depict the outlines of the heart, lung, 
trachea, esophagus, and spinal cord. For geometric accuracy, the authors 
acquired and compared the Dice similarity coefficient, Jaccard coefficient, 
Hausdorf distance, Center of mass deviation, Inclusive index, and Sensitivity 
index. For dosimetric accuracy, the dose statistical differences between 
manual- and auto-segmentation were analyzed. The absolute irradiation 
volume deviation (AVD) and volume percentage deviation (VPD) for the V5, 
V10, V15, and V20 of the lungs were assessed. The absolute irradiation dose 
deviation (ADD) and dose percentage deviation (DPD) for OAR were 
evaluated. Results: The DSC for each OAR was higher than 0.77. The 
dosimetric difference between manual and auto-segmentation was small and 
not significant (p>0.05). For the lung, the AVD was less than 7 mL, the VPD 
was less than 3%, the ADD of OAR was at most 0.4 Gy, and the DPD was less 
than 4%. Conclusion: The accuracy of the auto-segmented OAR for early 
peripheral NSCLC was acceptable based on AI Contour.  
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segmentation work accurately and efficiently would 
be very beneficial. Many studies have been conducted 
on developing auto-segmentation with deep learning 
technology for the delineation of targets in OAR (11-12). 
However, the application of auto-segmentation              
software along with cloud technology has rarely been 
performed to treat early peripheral NSCLC patients. 
With the arrival of the 5G era and the current               
COVID-19 pandemic, telecommuting has become the 
new working mode and may become routine in the 
near future. In this study, artificial intelligence (AI) 
cloud technology was applied to perform the          
auto-segmentation of OAR for selected early              
peripheral NSCLC patients. By evaluating the          
geometric accuracy and dosimetric accuracy of auto-
segmentation, it was found that applying AI could be 
a promising technology for the auto-segmentation of 
OAR. The purpose of this study is to enhance the           
uniformity and consistency of delineation of organs 
at risk in radiotherapy through artificial intelligence 
delineation technology, shorten delineation time,  
reduce the workload of radiotherapy physicians, and 
provide tools for radiation epidemiological research. 
The online artificial intelligence automatic               
delineation and the study of the dosimetry accuracy 
of the automatic delineation are the novelties of this 
study. 

 
 

MATERIALS AND METHODS 
 

Patient selection 
Computed tomography (CT) images of twenty 

patients with early peripheral NSCLC treated with 
cyberknife SBRT from February 2018 to October 
2021 were selected as research subjects. Eleven            
patients had squamous cell carcinoma, seven had 
adenocarcinoma, and two were diagnosed based               
on positron emission tomography-computed                      
tomography (PET-CT). The criteria for inclusion and 
exclusion of patients were that they had early-stage 
peripheral non-small cell lung cancer, the tumor            
diameter was less than 5 cm, and all patients had 
completed SBRT treatment. Thirteen patients had 
right lung cancer, and seven patients had left lung 
cancer. There were sixteen males and four females, 
aged 49–80 years (median age 61.5 years), with             
tumor maximum diameter 1.64–4.72 cm (median 
diameter 3.44 cm), and tumor volume 2.97–24.95 cc 
(median volume 11.63 cc). The serial number of the 
institutional Ethical approval is 2022168 registered 
on October 21, 2022. Table 1 lists the main                         
characteristics of the patients. Regarding the dose 
segmentation model, twelve patients were treated 
with 12 Gy × 5f (BED=132 Gy), and eight patients 
were treated with 10 Gy × 5f (BED=100 Gy). The             
limits of OAR were determined according to the             
corresponding literature requirements (13-14).  
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CT image acquisition and reference contours 
In this study, CT image acquisition was carried out 

on a Siemens CT scanner (SOMATOM Definition AS). 
CT scanning parameters are: scanning voltage: 120 
keV, current: 400 mA, Scanning layer thickness: 1 
mm, Image size: 512×512, and the number of               
scanning layers ranges from 278 to 375 layers.             
Because Cyberknife image tracking has special          
requirements for scanning parameters, the scanning 
conditions are different from general radiotherapy. 
The CT images of twenty patients with a scanning 
layer thickness of 1 mm were uploaded to the                
LinkingMed artificial intelligence cloud outline               
platform (AI Contour, Version 3.1.6.0, LinkingMed 
Ltd., Beijing, China). The segmented structures               
included the heart, left and right lungs, trachea, 
esophagus, and spinal cord. On the AI Contour               
platform, manual segmentation was completed by a 
senior radiation oncology expert specializing in chest 
tumors and verified by another expert to ensure the 
accuracy of the segmentation. Manual segmentation 
was considered the standard. 

 

Artificial intelligence cloud auto-segmentation 
The Linking Med AI Contour was used to perform 

the auto-segmentation of OAR online. At present, 
most AI segmentation software are based on the              
U-net model (15), whereas AI Contour uses the 3D             
U-net model to perform the auto-segmentation of 
OAR. The 3D U-Net model is composed of two parts: 
down  sampling and up sampling. Down sampling 
comprises seven dilated convolution layers and              
massive pooling layers. The up sampling comprises 
seven dilated convolution layers and three               
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Patient 
number 

Age 
Tumor 

location 

Tumor 
diameter 

(cm) 

PTV 
Volume 

(cc) 

Dose 
segmentation 

model 
1 52 RML 2.31 6.94 12 Gy × 5f 
2 67 LLL 2.28 6.42 12 Gy × 5f 
3 54 RUL 2.66 9.89 10 Gy × 5f 
4 69 RLL 2.61 9.32 10 Gy × 5f 
5 61 LLL 3.34 19.55 10 Gy × 5f 
6 49 RML 1.90 3.59 12 Gy × 5f 
7 51 RUL 1.93 3.79 12 Gy × 5f 
8 72 RUL 2.54 8.56 12 Gy × 5f 
9 59 RML 2.48 7.72 12 Gy × 5f 

10 63 RUL 4.22 23.41 10 Gy × 5f 
11 52 LUL 1.64 2.97 12 Gy × 5f 
12 61 LUL 3.29 18.72 10 Gy × 5f 
13 50 RLL 1.89 3.51 12 Gy × 5f 
14 67 RUL 1.68 3.24 12 Gy × 5f 
15 73 LUL 1.72 3.83 12 Gy × 5f 
16 80 RML 2.77 10.53 10 Gy × 5f 
17 55 RUL 2.45 7.73 12 Gy × 5f 
18 53 LLL 3.79 22.59 10 Gy × 5f 
19 64 LUL 2.32 6.54 12 Gy × 5f 
20 78 LUL 4.72 24.95 10 Gy × 5f 

Table 1. Patients’ characteristics. 

Note: LUL: Left upper lobe; LLL: Left lower lobe; RUL: Right upper lobe; 
RML: Right middle lobe; RLL: Right lower lobe. 
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deconvolution layers. In addition to the inherent             
connection of down sampling and up sampling, a  
connection between two dilated adjacent                         
convolutional layers was also added, and the                  
extracted features were combined with increasing 
richness. A more detailed introduction to this method 
can be found in the literature (16). At present, AI              
contours can achieve more than 100 OAR                 
auto-segmentation tasks online. The specific                
working platform of the AI Contour is shown                       
in figure 1 (AI Contour website: https://
aicontour.linkingmed.com/). AI Contour deploys 
servers and software on top of the cloud and                 
distributes them to the users as needed. The AI               
Contour platform is a software-as-a-service (SAAS) 
technology (17), which eliminates the downloading 
and installation of user software and the storage of a 
large amount of patient data locally. Users can               
complete the segmentation remotely through a             
desktop, laptop, or even a tablet. The workflow of the 
AI contour consists of: (1) uploading the CT images to 
the cloud, (2) subsequent to upload, clicking on the 
patient that needs to be opened, and using the auto 
region of interest (ROI) function to auto-segment the 
OAR, (3) using the compare module to                             
quantitatively compare the geometric accuracy of the 
auto-segmentation and manual-segmentation results. 

 

Geometric evaluation index of auto-segmentation 
and manual-segmentation 

In this study, the geometric evaluation indicators 
include Dice similarity coefficient (DSC), Jaccard   
coefficient (JC), Hausdorff distance (HD), Center of 
mass deviation (CMD), Inclusive index (IncI), and 
Sensitivity index (SI). Those evaluation indicators can 
be respectively written as equations 1-6. In those 
equations, Vm is the volume of manual segmentation, 
Va is the volume of auto-segmentation, Xm, Ym, Zm are 
the coordinates of the three coordinate axes of the 
manual delineation structure, Xa, Ya, Za are the                
coordinates of the three coordinate axes of the            
automatically delineated structure. The meaning of 
the formula in the text is: (1) The DSC coefficient is 
used to evaluate the two delineation methods; (2) JC 
is the geometric similarity index of the delineated 
OAR; (3) HD is a measure of dissimilarity between 

two points sets; (4) CMD reflects the centroid           
distance of the two delineation methods; (5) IncI  
coefficient reflects the inclusion of Va in Vm, that is, 
the probability that a voxel of Va is actually a voxel of 
Vm; ( 6) SI reflects the matching probability of Va and 
Vm. 

 
1. Dice similarity coefficient (DSC) (18) 

 
            (1) 
 

 

2. Jaccard coefficient (JC) (19) 

 
      (2) 
 

 

3. Hausdorff distance (HD) (20) 
The two sets X={x1,…,xn}, Y={y1,…,yn}, and the 
Hausdorff distance between these two sets of points 
is defined as 

 
HD (X,Y ) = max (h (X,Y ),h (Y,X))   (3) 
 
Among them, h(X,Y)= 

 
1. Center of mass deviation (CMD) 

 
        (4) 
 

2. Inclusive index (IncI) (21) 
 
    (5) 
 
 

3. Sensitivity index (SI) (22) 
 
       (6) 
 

 

Dosimetric evaluation index 
The auto-segmentation structure, manual-

segmentation structure, original CT image, and               
initially planned dose distribution are imported into 
the MIM software (6.9.4), whereby the evaluation 
workflow is used to extract dose volume histogram 
(DVH) data. For the left and right lung tissues, V5, V10, 
V15, and V20 were obtained, and Dmax was derived from 
the heart, trachea, esophagus, and spinal cord. Due to 
the slight differences in the total delineation volume 
of the left and right lung tissues between                           
auto-segmentation and manual-segmentation, the 
irradiation volume of the lung tissue extracted in this 
study was the absolute volume. For the left and right 
lungs, |ΔV| = |Vmanual-Vauto| and |ΔV%| = | (Vmanual-
Vauto) / Vmaual * 100%| in the quantitative analysis; for 
the heart, trachea, esophagus, and spinal cord, which 
are serial organs, |ΔDmax| = |Dmax-manual - Dmax-auto| and 
|ΔDmax%| = |(Dmax-manual - Dmax-auto)  /  Dmax-manual*100 %|  
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Figure 1. Illustration for the Web-based AI Contour working 
platform. 

2( )
DSC

Vm Va

Vm Va


=

+

JC
Vm Va

Vm Va


=



2 2 2
CMD ( ) ( ) ( )Xa Xm Ya Ym Za Zm= − + − + −

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
21

.2
.3

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

rr
.c

om
 o

n 
20

25
-0

7-
31

 ]
 

                               3 / 8

http://dx.doi.org/10.52547/ijrr.21.2.3
http://ijrr.com/article-1-4678-en.html


for quantitative analysis.  
 

Time comparison 
The time for manual segmentation was set to the 

time elapsed from opening the CT images to the  
completion of the segmentation of the last OAR. The 
time for auto-segmentation was set to the time 
elapsed from uploading the CT images to the              
completion of the segmentation of the last OAR. 

 

Statistical analysis 
In this study, the data are represented by`X ± s, 

and the paired sample t-test was used for data that 
conformed to the normal distribution; the Wilcoxon 
signed-rank test was used for data that were not  
normally distributed. Statistical significance was set 
to p < 0.05. SPSS 22 software and the Shapiro-Wilk 
method were used for statistical analyses to check 
whether the data followed a normal distribution. 

 

 

RESULTS 
 

Geometric discrepancies 
The specific AI contour auto-segmentation and 

manual-segmentation geometric accuracy index data 
are listed in table 2. Through comparisons, it was 
determined that the average value of DSC for each 
OAR was higher than 0.77, and the average value of 
JC was higher than 0.63. It was pointed out in the 
literature (23, 24) that when the DSC value is higher 
than 0.7, the auto-segmentation structure is               
acceptable. The DSC value of the left and right lungs 
were the highest (0.97 ± 0.01), and the esophagus 
DSC value was the lowest (0.77 ± 0.05), which may be 
the reason for the precise boundary of the lung           
tissue, the blurred boundary of the esophagus, and 
the small difference in contrast with the surrounding 
tissues. In terms of the parameters representing the 
two types of segmentation distances, the Lung-R had 
the largest HD with a value of (27.06 ± 13.88) mm, 
and the heart had the largest CMD with a value of 
(4.21 ± 2.97) mm. The mean value of the IncI of each 
OAR was higher than 0.70, and the mean value of SI 
was higher than 0.86. Based on the geometric               
accuracy data, the AI contour outline accuracy was 
acceptable. Figure 2 shows a case comparison chart 
of auto-segmentation and manual segmentation. 

 

Dosimetric analysis 
The dosimetric differences between the left and 

right lung tissues are compared in table 3. A                  
comparative study suggested that the dosimetric     
difference was not significant in the left and right 
lung tissues (p > 0.05). In terms of absolute                     
irradiation volume deviation |ΔV|, the maximum  
value was V5 of Lung-R, ((6.51 ± 6.92) mL). In terms 
of volume percentage deviation |ΔV%|, the maximum 
value was also V5 of Lung-R ((2.67 ± 1.87)%). This 

may be because V5 was a low-dose area of irradiation, 
and the V5 irradiation volume was markedly greater. 
For the other OAR, such as the heart, trachea,                
esophagus, and spinal cord, the specific data are 
shown in table 4. A comparative study suggested that 
the dosimetric difference was not significant in the 
heart, trachea, esophagus, and spinal cord (p > 0.05). 
In terms of the absolute dose deviation |ΔDmax|, the 
maximum value was the trachea, with a value of (0.33 
± 0.36) Gy. In terms of dose percentage deviation 
|ΔDmax%|, the maximum value also was that of the    
trachea, with a value of (3.15 ± 2.61) %. From the  
differences in dosimetry data, it was observed that 
both the absolute and the percentage deviations were 
lower, indicating that the dosimetry similarity of the 
two types of segmentation was high. Figure 3 shows 
the specific dosimetric distribution for one patient. 
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Figure 2. In a case comparison chart of auto- and manual-
segmentation, the results of auto-segmentation are in red, and 

the results of manual-segmentation are in green. Regions of 
interest were depicted with red lines. 
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OAR DSC JC 
HD 

(mm) 
CMD 
(mm) 

IncI SI 

Lung-L 
0.97± 
0.01 

0.94± 
0.03 

22.53± 
10.56 

2.21± 
1.42 

0.97± 
0.03 

0.96± 
0.03 

Lung-R 
0.97± 
0.01 

0.93± 
0.02 

27.06± 
13.88 

3.39± 
3.90 

0.97± 
0.03 

0.96± 
0.03 

Trachea 
0.87± 
0.03 

0.77± 
0.05 

8.06± 
2.94 

1.99± 
1.35 

0.83± 
0.09 

0.90± 
0.07 

Esophagus 
0.77± 
0.05 

0.63± 
0.06 

9.53± 
5.09 

2.70± 
1.78 

0.70± 
0.09 

0.86± 
0.09 

Spinal Cord 
0.88± 
0.03 

0.78± 
0.05 

4.84± 
1.73 

1.47± 
0.82 

0.87± 
0.07 

0.89± 
0.07 

Heart 
0.91± 
0.01 

0.84± 
0.02 

15.71± 
8.10 

4.21± 
2.97 

0.91± 
0.06 

0.90± 
0.05 

Table 2. Geometric accuracy index data of auto-segmentation 
and manual segmentation (mean ±SD). 

DSC is the Dice similarity coefficient, JC is the Jaccard coefficient, HD is 
the Hausdorff distance, CMD is the center of mass deviation, IncI is 
the inclusive index, and SI is the sensitivity index. 

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
21

.2
.3

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

rr
.c

om
 o

n 
20

25
-0

7-
31

 ]
 

                               4 / 8

http://dx.doi.org/10.52547/ijrr.21.2.3
http://ijrr.com/article-1-4678-en.html


Time analysis 
The auto-segmentation time was (270.70±28.25) 

s, in contrast to the manual-segmentation time of 
(2463.10±158.10) s. There was a significant                 
difference in the segmentation times (p<0.001)            
indicating that the auto-segmentation method saved 
significantly more time. 

 
 

DISCUSSION 
 

In the current study, the AI Contour cloud              
platform was used to conduct OAR auto-
segmentation based on artificial intelligence on early 
peripheral NSCLC cases. It was found that the DSC 
value of each OAR was higher than 0.77; the JC value 
was higher than 0.63; and the geometric accuracy 
was acceptable. Cloud segmentation technology has 
the potential to avoid gathering as many subjects as 
possible. More importantly, the web-based                
segmentation mode improves work efficiency.             
Currently, research on auto-segmentation has been 
mainly based on the atlas and two types of deep 
learning technologies. Many previous atlas-based 

auto-segmentation studies have mainly focused on 
head and neck tumors and prostate cancer (25-26).  
Auto-segmentation of the atlas often provides                
unsatisfactory results for smaller sized organs with 
inconspicuous contrast changes. Artificial intelligence 
technology based on deep learning is expected to 
solve this problem. An auto-segmentation model 
based on deep learning technology learns high-
quality manual segmentation samples. When a new 
set of images is input, the auto-segmentation is           
carried out based on the well-trained model.              
Recently, many comparative studies on deep learning 
technology and atlas technology have been                 
conducted (27-28). These research results have shown 
that the segmentation quality of deep learning              
technology is generally higher than that of atlas            
technology. The auto-segmentation software based 
on deep learning saves the user from building a              
database as it can be directly used. In addition, using 
auto-segmentation software more frequently is               
conducive to the transition of radiotherapy from 
manual-segmentation to auto-segmentation mode. 

The results of this study suggested that the final 
dosimetric accuracy of the auto-segmentation was 
not only correlated with geometric simplicity, but 
also correlated with tumor-OAR geometric                      
relationship, irradiation technique, dose distribution, 
etc. Our results are similar to those of Robert et al. (29) 
for the auto-segmentation of breast cancer. However, 
more attention should be paid when the spinal cord 
and brain stem are around an area with a high dose 
gradient, even when high geometric accuracy is 
achieved by auto-segmentation. For geometric                
deviations precisely in the high-dose gradient area, 
the dosimetric deviations are more significant (30). 
With the advancement of radiotherapy technology 
and the upgrade of equipment, patients with early 
peripheral NSCLC may have an increasingly longer 
survival rate after SBRT treatment. For patients with 
a long survival period after SBRT, the AI contour auto
-segmentation function can also be used to conduct 
many retrospective studies to validate radiation      
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Table 3. Lung tissue dosimetric data of two kinds of segmentation (Mean ± SD). 

OAR Item Manual (ml) Auto (ml) t/Z P |ΔV| (ml) |ΔV%| 
Lung-L V5 141.96±203.75 144.04±208.46 -1.349 0.177b 4.55±6.51 2.93±2.31 

  V10 60.93±99.85 61.26±100.63 -0.676 0.499b 1.34±2.49 1.03±1.92 
  V15 34.59±57.37 34.76±57.67 -0.507 0.612b 0.77±1.49 0.85±1.46 
  V20 22.38±37.49 22.49±37.63 -0.338 0.735b 0.61±1.19 0.94±1.56 

Lung-R V5 224.71±186.85 227.13±188.08 -1.165 0.258a 6.51±6.92 2.67±1.87 
  V10 105.16±98.66 105.56±97.75 -0.781 0.435b 2.80±3.24 2.55±2.34 
  V15 60.15±63.59 60.38±62.99 -0.534 0.594b 1.56±2.14 1.93±2.19 
  V20 40.36±44.73 40.51±44.32 -0.524 0.600b 1.01±1.46 1.75±2.30 

a: Paired sample t-test; b:Wilcoxon signed-rank test. |ΔV|=|Vmanual-Vauto|, |ΔV%| = |(Vmanual-Vauto)/Vmanual*100%| 

OAR Item Manual (Gy) Auto(Gy) t/Z P |ΔDmax|(Gy) |ΔDmax%| Max|ΔDmax|(Gy) Min|ΔDmax|(Gy) 
Trachea Dmax 9.30±5.78 9.37±6.04 -0.348 0.727b 0.33±0.36 3.15±2.61 1.24 0.02 

Esophagus Dmax 7.31±3.37 7.24±3.41 1.459 0.161a 0.15±0.16 2.36±2.12 0.56 0.03 
Spinal Cord Dmax 6.12±2.59 6.08±2.60 2.003 0.060a 0.08±0.08 1.57±1.74 0.27 0.01 

Heart Dmax 10.86±6.25 11.05±6.45 -1.857 0.079a 0.31±0.37 2.60±2.30 1.19 0.01 

Table 4. Dosimetric data of the heart, trachea, esophagus, and spinal cord of two types of segmentation (mean ±SD). 

a: Paired sample t-test; b:Wilcoxon signed-rank test. |ΔV|=|Vmanual-Vauto|, |ΔV%| = |(Vmanual-Vauto)/Vmanual*100%| 

Figure 3. The specific dosimetric distribution of a selected 
patient. (Dose segmentation is 10 Gy × 5f). The results of             

auto-segmentation are in red, and the results of                     
manual-segmentation are in green. 
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injury models (normal tissue complication                     
probability, NTCP). The results of this study are 
mainly related to early peripheral NSCLC. Early               
central lung tumors and other chest tumors are more 
complicated to investigate. Thus, further research 
into tumors surrounded by more complex anatomies 
still needs to be performed in the future. 

Our results demonstrate the feasibility of applying 
cloud delineation technology for this disease type. 
With the advent of the 5G era, radiotherapy is              
expected to rely more heavily on cloud technology. 
Cloud technology and cloud services are Internet-
based computing models, which can be configured 
dynamically as required because of the distributed 
computing technology aspect. The computing                 
processing program is divided into relatively small 
systems throughout the network, and multiple              
servers perform tasks in parallel. After analysis and 
processing, the results are summarized and sent back 
to the user. The advantages of cloud technology in the 
field of radiation therapy are manifold: (1) Cloud 
technology can be realized in a mobile office enabling 
remote segmentation, remote planning, and remote 
collaboration, optimizing the time of radiotherapy 
practitioners, saving time and space, and improving 
work efficiency; (2) users do not need to download 
and install the segmentation software if they can  
perform segmentation work by logging into the          
website; (3) users do not need to store a large              
number of images and other data locally because all 
data can be stored in the cloud and can be                       
downloaded when needed, thereby reducing the            
operation and maintenance costs of the radiotherapy 
unit; (4) relatively small radiotherapy units can rely 
on smart products in the cloud to standardize                 
treatment and narrow the gap between different 
units. The markedly increased efficiency of cloud 
technology may change the preferred analysis              
working model. 

 
 

CONCLUSION 
 

The results of this study suggest that the AI                
Contour cloud technology-based intelligent                     
segmentation platform can efficiently perform              
auto-segmentation of OAR for early peripheral NSCLC 
and is acceptable in terms of both geometric and  
dosimetric accuracy. However, it should be noted 
that applying auto-segmentation in the clinical           
setting requires review and approval by an                   
experienced radiation oncology team. In the era of 
precision therapy, radiotherapy of lung cancer also 
requires the auto-segmentation of more structures 
such as the chest wall, bronchus, large blood vessels, 
and even brachial plexus nerves. 
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