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Dosimetric evaluation of a hybrid treatment planning for 
whole-brain radiation with hippocampal sparing 

INTRODUCTION 

Brain metastases will occur in 30% of patients 
with some type of neoplasia (1). Whole brain radiation 
therapy (WBRT) is commonly used in patients with 
this condition (2). Unfortunately, WBRT has been        
reported to cause long-term adverse neurological 
effects, such as leukoencephalopathy, cognitive           
deterioration, cerebellar dysfunction, and dementia (3
–5). These effects are progressive and irreversible. The 
evidence also shows that WBRT leads to                     
deterioration in some cognitive functions such as 
learning, memory and spatial orientation (6, 7). There 
is strong evidence to suggest that damage to the             
hippocampus results in neurocognitive impairment 
(8). In a study by Abayomi (9), the hippocampus and 
surrounding medial temporal lobe cortex were      
identified as the critical area where radiation                 
generates neurocognitive decline. It is possible that 
the high radiation sensitivity of the progenitor neural 
cells located in the dentate gyrus of the hippocampus 
is the reason for the previously described affections 
(10, 11). Therefore, it is suggested that WBRT with  
sparing of hippocampi (WBRT-HS) may be an                
effective treatment option for most patients with 

brain metastases, in order to minimize any possible 
cognitive decline. 

Radiation Therapy Oncology Group (RTOG)              
protocol 0933 is a phase II study where the use of 
hippocampal sparing during WBRT for the treatment 
of brain metastases was investigated (12). Performing 
WBRT-HS requires complex treatment planning and 
the first studies in this area were made using helical 
tomotherapy (13–15) or linear accelerators based              
techniques, such as intensity modulated radiotherapy 
(IMRT) (11, 16) and volumetric modulated arc therapy 
(VMAT) (2, 17, 18). There are several studies where            
dosimetric analysis for protection of the                          
hippocampus are compared using different treatment 
techniques; Gondi et al. (15) compared helical              
tomotherapy with IMRT in terms of coverage to             
planning target volume (PTV), dose reduction to     
hippocampus and homogeneity, while Lee et al (19) 
did something similar but comparing IMRT versus 
VMAT. There are even studies where the three               
techniques are compared simultaneously (20).                 
Furthermore, it is possible to combine two                      
techniques to build what is known as a "Hybrid 
plan" (21–23) which benefits from the advantages of the 
planning techniques that compose it. There are        
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ABSTRACT 

Background: To study the possible dosimetric benefits of a Hybrid planning technique 
that consists of combining intensity modulated radiotherapy (IMRT) and volumetric 
arc therapy (VMAT) for whole brain radiation therapy hippocampal-sparing (WBRT-
HS). Materials and Methods: Three types of plans were made for 15 patients, namely 
Hybrid, pure IMRT, and pure VMAT and retrospectively compared. Each plan was 
made using contoured structures on computed tomographic (CT) images fused with 
magnetic resonance imaging (MRI). The homogeneity (HI) and conformity (CI) indices 
of the planning target volumes (PTVs) were calculated to establish the dosimetric 
quality in all plans. The dose received to organs at risk (OARs), number of monitor 
units (MUs) and treatment time were evaluated for each type of planning technique. 
Results: Hybrid plans showed superior homogeneity (p = 0.04) and conformity (p = 
0.01) indices compared to IMRT and VMAT plans. In terms of hippocampus sparing, 
the Hybrid technique showed almost equal D100% and maximum dose (Dmax) values 
compared to the other techniques, but without statistical significance (p> 0.05); 
however, there was a significant difference for the left hippocampus, where the IMRT 
technique obtained the best result (p <0.001). Hybrid plan values for dose delivered to 
the remaining OARs, MUs and treatment times were intermediate between those of 
IMRT and VMAT. Conclusion: Compared to the IMRT and VMAT plans, the hybrid plan 
showed improved dosimetric plan quality along with intermediate dose values to the 
OARs. 
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various types of hybrid plans. In Hybrid VMAT              
(H-VMAT) plans, the majority of the dose is delivered 
using static fields in Three-dimensional conformal 
radiotherapy (3D-CRT), while the remaining dose is 
delivered with VMAT (24).  

In other hybrid plans, the IMRT technique is             
combined with VMAT, seeking to combine the                
intensity modulation control of IMRT with the       
angular sampling of VMAT (25). Different dose                 
proportions are reported between the types of fields 
for the construction of hybrid plans. In general, one 
third of the dose is delivered through IMRT or VMAT 
fields, while the rest is done through static fields (26). 
However, the optimal dose ratio between the various 
types of plans is still an open topic of research (27). To 
the best of the authors' knowledge, the hybrid               
planning technique for WBRT-HS has never been  
implemented. It has also not been established what 
optimal dose ratio between the various planning 
techniques is adequate for the construction of a              
hybrid plan in WBRT-HS. Treatments with hybrid 
plans generally report better dosimetric quality 
(better target coverage and dose distribution) along 
with greater protection to organs at risk (OARs) (28). 
For all of the above, the authors consider that the 
implementation of the Hybrid technique for                    
WBRT-HS is of great relevance and novelty. The         
present study was designed to compare the Hybrid 
plan technique with plans made with pure IMRT and 
VMAT in terms of conformity, homogeneity, doses to 
OARs and treatment time. All of the described above 
will be done by evaluating the dosimetric differences 
between these three treatment modalities for             
WBRT-HS, following the RTOG 0933 criteria. 

 
 

MATERIALS AND METHODS 
 

Delineation of target volumes and OARs 
Fifteen patients who had undergone computed 

tomography (CT) simulation of the brain for other 
radiation therapy planning were retrospectively            
selected. Patients were 6-83 years old, with a mean 
age of 45.5 years. The demographic characteristics of 
all patients are shown in table 1.  

The CT simulation was performed with a                 
single-energy 64 slice Siemens SOMATOM Definition 
AS VA44A scanner (Siemens Healthier, Germany). 
Patients were placed in a supine position for the            
simulation process using a thermoplastic mask. CT 
images were acquired with a 2.5 mm slice thickness 
extending from the vertex to clavicles without             
contrast. All Digital Imaging and Communications in 
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Medicine (DICOM) 3D-CT image data sets were then 
transferred to the Eclipse Treatment Planning System 
(TPS) (v. 16.1, Varian Medical Systems; Palo Alto, CA, 
USA). Additionally, all patients had previously               
undergone brain magnetic resonance imaging (MRI). 
All MRI acquisitions were performed on a 3-T MRI 
scanner (MAGNETOM Skyra, Siemens, Erlangen             
Germany), including a volumetrically acquired T1 
postcontrast sequence, as well as T2 and fluid-
attenuated inversion recovery sequences. Then MRI 
scans were semi-automatically fused to the bony 
anatomy on the planning CT images using an Eclipse 
mutual information algorithm for contouring and 
planning. The whole brain volume (all brain                
parenchyma tissue to C1 or C2) was contoured on CT 
bone window as the clinical target volume (CTV). The 
hippocampus was delineated according to the RTOG 
0933 protocol (12) and defined as one paired organ. 
Both hippocampi were contoured on axial images and 
focused on medial hypointense signal from lateral 
ventricle temporal horn in accordance with RTOG 
atlas definition. The hippocampal avoidance region or 
hippocampal Planning Risk Volume (PRV) was       
generated using a computer-automated 5 mm            
isotropic margin expansion of the contoured                
hippocampus. The PTV was defined as CTV plus 5 
mm expansion excluding the hippocampal PRV. The 
lenses, eyes, optic nerves, chiasm and hippocampus 
were contoured as OARs. Delineation was assessed 
and approved by a single radiation oncologist and 
reviewed by a second senior radiation oncologist. 

The RTOG 0933 protocol was followed, which  
establishes a dose prescription for the entire brain 
PTV of 30 Gy in 10 fractions. In the previously           
mentioned protocol, high dose gradients are allowed 
in the brain (29); this is done in order to achieve a           
correct coverage of the PTV, as well as limit the dose 
to the hippocampi and other OARs. The specific            
dosimetric criteria for compliance with the RTOG 
0933 protocol are listed in table 2. Although the              
protocol does not state them explicitly, the following 
dose restrictions were established: Dmax <30 Gy, Dmax 
<10 Gy and mean dose (Dmean) <35 Gy for eyes, lenses 
and cochlea, respectively.  

 

Planning techniques   
The same medical physicist created an IMRT, 
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Patient characteristics 
Median Age (years) 45 (6-83) 

Gender 9 Female: 6 Male 
Diagnosis  Central nervous system (CNS) tumors 

Table 1. Patient demographic information.  

Organ Dose constraints Acceptable variation 

Whole brain PTV 
D2% < 37.5 Gy 
D98% > 25 Gy 
V30Gy > 95% 

D2% < 37.5 to 40 Gy 
D98% > 22.5 to 25 Gy 
V30Gy > 90% to 95% 

Hippocampi 
D100% < 9 Gy 
Dmax < 16 Gy 

D100% < 9 to 10 Gy 
Dmax < 16 to 17 Gy 

Optic Nerves Dmax < 30 Gy Dmax < 30 to 37.5 Gy 
Chiasm Dmax < 30 Gy Dmax < 30 to 37.5 Gy 

Table 2. RTOG 0933 dosimetric compliance criteria for            
hippocampal sparing (HS); D2%= Dose received by hottest 2% 

of PTV; D98%= Dose received by 98% of PTV; D100%= Dose         
received by 100% of hippocampus; Dmax= maximum dose;  

V30Gy = Volume of PTV that receives a 30 Gy dose. 
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VMAT, and Hybrid plan for each patient on the same 
CT fused with its corresponding MRI study. The goal 
was that 100% of the prescription dose should be 
delivered to at least 90% of the volume of the PTV for 
all plans. To make a fair comparison between the 
three types of techniques, all plans were normalized 
to this dose-volume point value. The dose delivered 
to the hippocampi and other OARs was reduced as 
much as possible. Treatment plans were generated by 
the Eclipse TPS with the AAA (anisotropic analytical 
algorithm) on a Varian VitalBeam Linear Accelerator 
(Varian Medical Systems, Palo Alto, CA) equipped 
with a 120 leaf multi-leaf collimator (MLC), using 6 
MV beams, with a dose grid size of 0.25 cm. 

For IMRT plans, 11 fields were used in total, five 
were coplanar (couch angle set to 0°) and six were in 
a different plane (i.e. a different couch angle). The 
coplanar fields were separated by 72°, the gantry 
angles were 0°, 72°, 144°, 216° and 288°. The couch 
angle was set to 90° for the remaining gantry angles, 
which were 181°, 223°, 265°, 307°, 332° and 30°. A 
collimator angle of 0° was chosen for all fields in           
order to reduce the dose to the OARs (30). All fields 
had a 6 MV voltage. The sliding window modality 
with a stable dose rate of 600 monitor units (MUs)/
minute was maintained in all plans. Similar                   
optimization priorities were set in the optimization 
algorithm. Achieving adequate coverage for the PTV 
was considered the most important, followed by            
limiting the dose to the hippocampi and to the rest of 
the OARs. The field arrangement for the IMRT plans 
can be seen in figure 1 (a). 

The same voltage and dose rate were used for 
plans made with VMAT as with IMRT. For each               
patient, eight arc fields were used in total, four                
coplanar (couch angle set to 0°, with a gantry               
extension of 358°) and four in a different plane 
(couch angle set to 90°, with a gantry extension of 
209°). Two of the coplanar fields were placed from 
179° to 181 ° (anti-clockwise) and the remaining two 
from 181° to 179° (clockwise). Similarly, two of the 
fields with a couch angle of 90° were placed from 30° 
to 181° (counter-clockwise) and the other two from 
181° to 30° (clockwise). For coplanar fields, two 
avoidance sectors were used in order to prevent             
direct entry of the beams through the eyes. For the 
anti-clockwise fields, the avoidance sector was 50° to 
350° and for the clockwise fields it was 350° to 50°. 
To limit the Tongue-and-Groove effect (31), collimator 
angles of 10° and 350° were chosen for the clockwise 
and counterclockwise fields, respectively. A field size 
of 15 cm was used, since it is recommended to allow 
the MLC to obtain a better coverage of the target (32). 
However, because all PTVs had dimensions greater 
than 15 cm, it was necessary to use four VMAT fields 
for each couch orientation. To make a fair                     
comparison, the template and optimization goals 
were the same as in the IMRT plan. The field             
arrangement for the VMAT plans can be seen in figure 

1 (b). 
Hybrid plans were made by combining IMRT's         

11-field plans and VMAT's eight-arc plans in a sum of 
plans between IMRT and VMAT plans. A dose          
proportion where 70% of the dose corresponded to 
the IMRT plan and 30% to the VMAT plan was             
chosen. This dose ratio was reported by Akbas et al. 
(22) and had the best dosimetric results overall. The 
original 11 IMRT fields and the eight VMAT fields 
were not changed. The dosimetric results of the              
Hybrid plans were evaluated in the plan sum. The 
field arrangement for the Hybrid plans can be seen in 
figure 1 (c). 

 

Dosimetric evaluation 
A dose-volume histogram (DVH) was created for 

the dosimetric analysis. The homogeneity index (HI) 
was calculated using equation 1 (33):  

 

        (1) 
 

Where D2%, D98% and D50% represent the doses 
received by 2% (near maximum dose), 98% (near 
minimum dose), and 50% of PTV’s volume,               
respectively. A homogeneity index value of 0 would 
indicate an ideal dose distribution. 
The conformity index (CI) was also calculated             
equation 2 (21):  

 

        (2) 
 

Where VPTV, ref refers to the volume of the 100% of 
the prescribed dose that covers the PTV, VPTV refers 
to the volume of the PTV, and Vref is the volume of the 
100% prescribing dose curve. A CI value of 1              
indicates a perfect dose conformity. The treatment 
time in minutes was measured as the time interval in 
which the first to the last field was delivered               
including gantry rotation but not patient positioning. 
MUs were also recorded in all plans for comparison. 

 

Statistical analysis 
To analyze the dosimetric differences between the 

three planning techniques, the one-way Analysis of 
Variance (ANOVA) was used. When a significant            
difference was found (p <0.05), the difference               
between each of these three types of plans for each 
effect was further investigated using the unpaired             
t-test. The statistical analyses were performed using 
the OriginPro Software Version 2018 (OriginLab         
Corporation, Northampton, MA, USA). 
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Figure 1. Field arrangement for a single patient: (a) IMRT, (b) 
VMAT and (c) Hybrid techniques. 
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RESULTS  
 

The mean PTV volume was 1418.7 + 196.29 cm3. 
Treatment plans for all patients were in compliance 
with the RTOG 0933 protocol dosimetric criteria. 
Typical dose distributions at the hippocampi level 
are shown in figure 2; axial, coronal and sagittal 
views (from top to bottom) are shown for one            
representative patient.  

Table 3 shows the mean values of HI, CI, D100%, 
D98%, D95%, D50%, D2%, D1%, Dmean and Dmax for the PTV, 
their standard deviations (SD) are also shown. The        
p-values with statistical significance between the 
three planning techniques are in bold format.  

The average HI value for the IMRT technique was 
0.2781 ± 0.0453, for the VMAT plan it was 0.2862 ± 
0.0331 and for the Hybrid plan it was 0.2501 ± 0.0392 
(p = 0.04). The mean CI value for the IMRT technique 
was 0.8319 ± 0.0243, for the VMAT technique it was 
0.8268 ± 0.0212 and for the Hybrid plan it was 
0.8493±0.0171 (p=0.01). There were significant                     
differences for both quality indices when comparing 
the three types of plans. The indices belonging to the 
Hybrid plan obtained the best results. For D100%, D50% 
and Dmean the VMAT technique had the highest dose 
values (p <0.001); for D98%, the VMAT technique also 
showed the highest dose value but there was no           
significant difference between the three planning 
techniques (p = 0.73). The IMRT plan had highest 
dose value for D95% (p <0.001). The high doses values 
(D2%, D1% and Dmax) for the Hybrid technique were the 
smallest among the three types of plans (p<0.001). 

The dosimetric comparisons of the hippocampi 
and the rest of OAR are shown in table 4. The                
p-values with statistical significance are again in bold 
format. In terms of hippocampus avoidance, the        
Hybrid technique had a very similar D100% values 
compared to the other two types of plan. Plans made 
with VMAT had the lowest value, but without          
statistical significance (p> 0.05, for both hippocampi). 
Similarly, for the Dmax delivered to the right                      
hippocampus, the three types of plans had similar 
dose values without showing a significant difference 
(p = 0.10). However, for the left hippocampus there 
was a statistically significant difference in Dmax, being 
the IMRT technique the one that obtained the lowest 
value (Dmax=1327.81 cGy, p<0.001). In both optic 
nerves, the VMAT technique showed the lowest Dmax 
values (p = 0.02). For the chiasm, the Hybrid plan had 
the smallest Dmax, however there was not a significant 
statistical difference (p = 0.18). For lenses, eyes and 
cochlea, OARs not specifically mentioned in the RTOG 
0933 protocol, the hybrid technique obtained                
intermediate Dmax and Dmean values compared to IMRT 
and VMAT. The average DVHs of PTV and OARs are 
shown in figure 3. 

The MUs and treatment time of the three planning 
techniques are shown in table 5. The p-values with 
statistical significance are in bold format. The MUs 
and treatment time values for the Hybrid plans were 
between those of the IMRT and VMAT plans. 
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Figure 2. Dose distribution on axial, coronal, and sagittal views 
for one patient: (a) IMRT, (b) VMAT, and (c) Hybrid plan. 

Table 3. PTV Dosimetric parameters for IMRT, VMAT and  
Hybrid plans; SD – standard deviation; HI – homogeneity index 

(equation 1); CI – conformity index (equation 2); bold               
p-values indicate statistical significance between the three 

planning techniques. All plans were normalized so that 90% of 
the PTV volume received a dose of 30 Gy. 

Item 
IMRT 

(mean ± SD) 
VMAT 

(mean ± SD) 
HYBRID 

(mean ± SD) 
p-value 

HI 
0.2781 ± 
0.0453 

0.2862 ± 
0.0331 

0.2501 ± 
0.0392 

0.04 

CI 
0.8319 ± 
0.0243 

0.8268 ± 
0.0212 

0.8493 ± 
0.0171 

0.01 

D100% (cGy) 981.6 ± 74.55 
1433.30 ± 

134.71 
1176.47 ± 

71.88 
<0.001 

D98% (cGy) 
2463.83 ± 

117.95 
2494.12 ± 

86.97 
2481.76 ± 

106.73 
0.73 

D95% (cGy) 
2940.63 ± 

16.15 
2785.36 ± 

44.86 
2887.03 ± 

26.94 
<0.001 

D50% (cGy) 
3114.13 ± 

11.90 
3239.33 ± 

41.94 
3119.39 ± 

31.41 
<0.001 

D2% (cGy) 
3330.22 ± 

35.59 
3422.49 ± 

61.47 
3262.1 ± 26.55 <0.001 

D1% (cGy) 
3374.71 ± 

40.29 
3455.66 ± 

63.03 
3287.08 ± 

31.22 
<0.001 

Dmean (cGy) 
3093.61 ± 

10.28 
3189.72 ± 

32.97 
3082.55 ± 

13.18 
<0.001 

Dmax (cGy) 
3836.24 ± 

223.91 
3686.39 ± 

84.32 
3524.77 ± 

98.43 
<0.001 
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DISCUSSION 
 

Recent evidence suggests that whole brain                
radiation is associated with a deterioration of               
cognitive function (34, 35).  Hippocampal dose                
avoidance is a way to reduce neurocognitive toxicity, 
this has been achieved through the use of advanced 
planning techniques, such as IMRT and helical             
tomotherapy (12, 15, 36). The modern planning methods 
have allowed a correct implementation of the WBRT-
HS while having adequate coverage of the PTV and 
there are dosimetric studies where the results               
obtained between them are compared (37). Gondi et al. 
(15) compared the efficiency of helical tomotherapy 
with IMRT, and found both techniques suitable for 
WBRT-HS. There are even studies such as the one by 
Saad et al. (38) where the dosimetric differences              
between IMRT and VMAT are compared for WBRT-
HS. They concluded that the VMAT technique showed 
better results in the CI and HI indices, with lower 
mean and maximum dose values delivered to the  
hippocampi compared to IMRT. There are multiple 
reports in literature where it is confirmed that both 
techniques are suitable for WBRT-HS (18, 39, 40).        

Despite all of the above, there is the possibility that 
neither of them is sufficient to meet certain                
dosimetric criteria. For this reason, Earl et al (41)            
proposed a hybrid treatment scheme combining the 
virtues of IMRT and VMAT. Matuszak et al. (42)               
proposed an IMRT/VMAT hybrid optimization            
strategy where IMRT intensity modulation was              
combined with single VMAT arches, this was applied 
in patients with prostate, pancreas and brain cancer. 
The importance of the approach of a Hybrid planning 
technique lies in the fact that both IMRT and VMAT 
have marked advantages and disadvantages. The 
IMRT technique is associated with the delivery of a 
large number of MU's, and therefore longer                    
treatment times(43). While the VMAT planning              
process turns out to be longer and more complex 
than in IMRT, and sometimes resulting in plans with 
lower dosimetric quality (44). In the present work, a 
Hybrid planning technique based on the combination 
of IMRT and VMAT for WBRT-HS was proposed. The 
plans made with the Hybrid technique showed a           
superior irradiation homogeneity, conformity and 
lower maximum doses to the target volume. The 
hybrid plan meets the criteria of the RTOG 0933    
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Organ Parameter IMRT (mean ± SD) VMAT (mean ± SD) HYBRID (mean ± SD) p-value 
Chiasm Dmax(cGy) 3253.23 ± 126.03 3207.30 ± 152.56 3165.17 ± 101.78 0.18 

Cochlea Left Dmean (cGy) 2772.99 ± 614.78 2871.56 ± 322.26 2756.01 ± 447.72 0.08 
Cochlea Right Dmean (cGy) 2454.01 ± 644.21 2962.48 ± 251.44 2541.09 ± 427.27 0.01 

Eye Left Dmax (cGy) 2199.33 ± 585.92 1765.05 ± 345.39 1994.73 ± 487.63 0.06 
Eye Right Dmax (cGy) 2340.11 ± 572.98 1883.55 ± 372.52 2119.12 ± 497.38 0.04 

Hippocampus 
Left 

D100% (cGy) 977.64 ± 22.39 955.49 ± 33.83 975.41± 29.40 0.08 
Dmax (cGy) 1327.81 ± 62.69 1608.68 ± 61.91 1404.77 ±60.44 <0.001 

Hippocampus Right 
D100% (cGy 959.83 ± 30.59 948.60 ± 22.22 965.27 ± 13.92 0.15 
Dmax (cGy) 1549.24 ± 57.88 1598.21±75.17 1570.84 ± 48 0.10 

Lens Left Dmax (cGy) 780.36 ±110.57 543.82 ± 55.31 691.53 ± 91.68 <0.001 
Lens Right Dmax (cGy) 779.89 ± 113.96 548.05 ± 54.55 694.48 ± 93.34 <0.001 

Optic Nerve Left Dmax (cGy) 3362.26 ± 296.07 2975.86± 350.56 3097.14 ± 202.82 0.002 
Optic Nerve Right Dmax (cGy) 3364.61 ± 270.74 3006.02 ± 312.79 3113.76 ± 178 0.002 

Figure 3. Representative Dose-Volume Histograms of target volumes (a) and OARs (b). All plans were normalized so that 90% of the 
PTV volume received a dose of 30 Gy. 

a b 

Table 4. OARs Dosimetric parameters for IMRT, VMAT and Hybrid plans; SD – standard deviation; bold p-values indicate statistical 
significance between the three planning techniques. 

Parameters IMRT (mean ± SD) VMAT (mean ± SD) HYBRID (mean ± SD) p-value 
MUs 3532.23 ± 289.65 770.79 ± 55.24 2596.20 ± 120.30 <0.001 

Time (min) 9.72 ± 0.41 6.23 ± 0.34 7.20 ± 0.36 <0.001 

Table 5. MU values and delivery time of treatment for IMRT, VMAT and Hybrid plans; SD – standard deviation; bold p-values indi-
cate statistical significance between the three planning techniques. 
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protocol and also presents adequate dose values for 
cochleae, lenses and eyes, OARs not explicitly                
mentioned in said protocol. The clinical importance 
of this is that an improvement in conformity and              
homogeneity for the PTV decreases the possibility of 
local recurrence and cognitive impairment (11, 12, 14–17, 
19, 20, 29, 37, 45, 46).  

There are several studies in the literature where a 
Hybrid technique is applied to various regions of the 
body. For nasopharyngeal cancer, Zhao et al. (44) 
made a dosimetric comparison between plans made 
with nine fields of IMRT and double arch VMAT with 
Hybrid IMRT/VMAT plans. Their Hybrid plan was 
generated with seven IMRT fields and a single VMAT 
arc and showed better conformity and homogeneity 
compared to the pure IMRT and VMAT plans along 
with lower doses to the temporomandibular joints, 
temporal lobes and mandible. They also reported 
fewer MUs compared to IMRT plans and lower doses 
to OARs such as parotids, brainstem and spinal cord 
compared to plans made in VMAT. For patients with 
early stage left breast cancer, Chen et al. (47) devised 
different types of Hybrid plans composed different 
combinations of IMRT, VMAT and 3D-CRT fields. In 
their work, the Hybrid plans obtained better                  
conformity indices, and lower dose values for the 
following parameters: heart volume that received 5 
Gy (V5Gy), D2% to the left ventricle, and volume of           
normal tissue that received 50.4 Gy (V50.4Gy). Hybrid 
plans have also been made in cases of pelvic tumors. 
For 10 patients with prostate cancer Ozturk et al. (23) 
created a Hybrid plan where 50% of the prescription 
dose was delivered in IMRT and the remaining 50% 
in VMAT. They reported lower values in comparison 
to pure IMRT and VMAT for the volume of bladder 
and rectum irradiated to 50 Gy (V50Gy), as well as a 
reduction in the mean dose to femoral heads. They 
also reported an improvement in dose homogeneity 
for the PTV. The results described above are similar 
to those obtained in this work (See tables 3 and 4). 
This shows the potential benefit of implementing a 
Hybrid plan, since all these benefits could be               
obtained without compromising the coverage to the 
target volume, while obtaining a plan with a better 
dosimetric quality. 

The dosimetric superiority of the Hybrid plan lies 
in the fact that it exploits the advantages of both the 
IMRT and VMAT techniques. The IMRT technique in 
general produces plans with better homogeneity 
compared to those of VMAT, this is due to its better 
beam modulation. On the other hand, the VMAT  
technique has a superior angular sampling which 
favors the correct conformation to the target volume. 
However, none of them (beam modulation and            
angular sampling) is sufficient alone to obtain an  
appropriate dose distribution. For all of the above, 
the authors suggest that the use of the Hybrid              
technique can be considered as a dosimetric           
improvement for WBRT-HS compared to only IMRT 

and VMAT; since it includes the advantages of both 
techniques while meeting the criteria of the RTOG 
0933 protocol. Two factors explain the intermediate 
values compared to the other techniques for the MUs 
and the treatment time: the complexity of the                
sequence of movements of the MLC for its IMRT  
component and the average aperture of the                   
optimized field size for the VMAT component. A 
greater depth of explanation was applied to cervical 
cancer by Martí n-Tovar et al. (48) in a previous work. 

Finally, it is important to mention that there are 
various research topics where knowledge about          
Hybrid plans could be deepened. To mention a few, 
the optimum ratio between IMRT and VMAT                  
components has not yet been established. Studies 
such as those by Zhao et al. (44) proposed a 2:1 ratio 
for IMRT and VMAT dose components. However, 
works such as Balaji et al. (49) and Bedford  et al. (50) 
suggest other proportions. In this work, an IMRT/
VMAT ratio of 7:3 was established. This suggests that 
there are various ways to implement and develop a 
Hybrid plan. 

 
 

CONCLUSIONS 
 

The combination in a Hybrid plan of the IMRT and 
VMAT techniques resulted in a plan with better           
dosimetric quality compared to plans made only with 
IMRT and VMAT. It also allows meeting the dose            
requirements for Hippocampi and other OARs              
described in the RTOG 0933 protocol, as well as for 
other organs not included in said protocol. The             
Hybrid planning technique is a viable option for 
whole brain radiotherapy with protection to                 
hippocampi. 
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