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Predicting prostate cancer radiotherapy complications: An 
integrated approach using radiomics, dosiomics, and machine 

learning 

INTRODUCTION 

Prostate cancer is a global health concern                
affecting men, and radiotherapy is a pivotal             
component of its treatment (1, 2). However,                       
radiotherapy can lead to complications that                  
significantly impact a patient's well-being and               
treatment outcomes. These complications encompass 
various aspects, including damage to the bladder, 
prostatic urethra, and rectum, necessitating precise 
data and management for effective treatment                 
planning and enhanced patient care. 

In recent years, the burgeoning fields of radiomics 
and dosiomics have garnered substantial attention 
due to their ability to extract quantitative features 
from medical imaging data and dose distribution  
information, respectively (1-4). These features offer 
valuable insights into tumor characteristics and the 
radiation dose delivered to the tumor and                     
surrounding tissues (5, 6). The integration of advanced 

machine learning techniques, such as logistic                 
regression and k-nearest neighbors, with radiomics 
and dosiomics, holds great promise in predicting 
treatment outcomes and identifying patients at              
higher risk of complications (7, 8). 

Numerous studies have attempted to develop 
models for these complications based on dosimetric 
and clinical parameters (9-11), but these models often 
face limitations, including variations in patient radio 
sensitivity and uncertainties in dosimetric and               
planning parameters. 

From both clinical and radiobiological                         
perspectives, it is evident that patients' responses to 
radiotherapy are subject to individualization.                 
Incorporating a patient's inherent radio sensitivity 
into the radiation treatment process, from patient 
selection to planning, may positively impact                     
treatment outcomes (12). Ongoing research in the field 
of radiogenomics aims to tailor treatments based on a 
patient's genomic characteristics (12, 13). 
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ABSTRACT 

Background: We aimed to develop a robust prognostic model for assessing the risk of 
complications associated with radiotherapy in prostate cancer patients using 
radiomics and dosiomics feature and machine learning. Materials and Methods: A 
cohort of 60 patients undergoing pelvic radiation therapy was analyzed. The patients’ 
radiomics and dosiomics features were extracted from segmented bladder and rectum 
regions in CT images, as well as 3D dose distribution data, respectively. Classifier 
algorithms, such as eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Support 
Vector Machines (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Random 
Forest (RF), and Multilayer Perceptron (MLP) were used for prediction modeling. A 5-
fold cross-validation method was used to evaluate the predictive classification of 
patients with and without proctitis and cystitis. The area under the receiver operating 
characteristic curve (AUC) was used for comparing models’ performance, as well 
assessing their specificity and accuracy metrics. Results: Various combinations of 
feature selection and classifier algorithms evaluated on both training and test datasets 
revealed that for bladder toxicity, the Relief+KNN dosiomics model, Boruta+SVM 
radiomics model, and the combined radiomics and dosiomics model with 
ANOVA+XGBoost show the highest AUCs of 0.76, 0.68, and 0.67, respectively. 
Regarding the rectal toxicity, the best-performing models were Boruta+KNN for 
dosiomics (AUC 0.83), ANOVA+RF for radiomics (AUC 0.72), and ANOVA+XGBoost for 
the combined radiomics and dosiomics (AUC 0.71). Conclusion: Our study 
demonstrated the effectiveness of diverse algorithms leveraging quantitative features 
extracted from CT imaging and 3D dose distribution data in predicting post-
radiotherapy complications in prostate cancer patients.  
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Through these approaches, our objective was to 
set up robust predictive models that can facilitate 
personalized treatment planning and relieve the risks 
related to complications. The findings of our study 
hold significant potential for enhancing treatment 
planning and personalized care for prostate cancer 
patients undergoing radiotherapy. By precisely               
recognizing patients at a higher risk of complications, 
clinicians can actualize custom-fitted methodologies 
to moderate these risks, driving to made strides in 
treatment outcomes and improving patient quality of 
life (14). 

This study innovates in predicting prostate cancer 
radiotherapy complications by integrating radiomics, 
dosiomics, and machine learning. Unlike traditional 
methods relying solely on dose-volume histograms, 
this approach leverages richer data and addresses 
limitations by capturing spatial information. It               
further emphasizes the strengths, limitations, and 
future directions for improved clinical utility in              
prostate cancer radiotherapy, ultimately aiming to 
optimize treatment and improve patient outcomes. 

 

 

MATERIALS AND METHODS 
 

Study design and patient cohort 
This study was conducted using analysis of               

computed tomography (CT) images and treatment 
planning data from 60 patients who received external 
beam radiotherapy for prostate cancer. Patient data 
were anonymized, for the study, ensuring that all 
analyses were performed on de-identified datasets.  

 

Data acquisition  
Planned CT images were obtained from a 16-slice 

SIEMENS scanner (Somatom Scope). Using special 
parameters, including a tube voltage of 120 kV, an 
exposure range of 225 mA, and a slice thickness of 3 
mm, to optimize treatment planning. The MONACO 
(version 5.11) treatment planning system was used 
for all patients, ensuring the consistency of treatment 
plans. Intensity Modulated Radiation Therapy (IMRT) 
was chosen as the treatment modality, with                
standardized beam arrangements across all patients. 
This uniform approach allows for accurate                 
comparisons and analysis of extracted radiomics and 
dosiomics features derived from the treatment plans. 

  
Toxicity assessment 

Radiation-induced proctitis and cystitis were           
assessed based on patient records and documented 
per the Common Terminology Criteria for Adverse 
Events (CTCAE) version 5. Specifically,                            
radiation-induced complications of grade ≥ 2 cystitis 
and proctitis were designated as primary toxicities 
for the bladder and rectum, respectively. Patients 
were classified as experiencing toxicity (Class 1) or 
not (Class 0).  

Segmentation 
The Region of Interest (ROI) was meticulously 

segmented under the guidance of an experienced  
oncologist. This involved precise delineation of the 
anatomical area or tumor region of interest on the 
medical images used in our study. The oncologist, 
possessing specialized proficiency in prostate cancer 
imaging, drew upon their clinical expertise and skill 
to intricately outline the ROI, following established 
guidelines and protocols (15).  

 

Radiomics and dosiomics feature extracting 
We employed the Pyradiomics library for feature 

extraction in this study, which is specifically designed 
to extract a wide range of features from segmented 
CT and 3D dose distribution (DD) data (16). This               
comprehensive extraction encompassed various            
feature sets, including shapes, first-order, second-
order, and higher-order features.  

To ensure consistency in feature extraction,               
preprocessing steps were executed. Before the             
extraction, it was necessary to resample the CT             
images to standardize voxel sizes, allowing for              
meaningful comparisons. The 3D dose distribution 
data were characterized by an isotropic voxels of 
1×1×1 mm³, which used  to resample the CT images 
with a voxel size of 1×1×1mm³ using B-spline                 
interpolation. This standardization ensured that the 
extracted features were independent of the original 
voxel dimensions, empowering a more reliable              
analysis and comparison of the radiomics and             
dosiomics features over the patient cohort (17). By 
minimizing the impact of image noise and variability, 
these discretization techniques aim to improve the 
accuracy and reliability of extracted features (18). 

 

Feature selection 
Following feature extraction, three distinct                

datasets were generated: CT radiomics features, DD 
dosiomics features, and a combined dataset                  
containing both CT and dose features. To facilitate 
model development and assessment, each dataset 
was partitioned into training (70%) and testing 
(30%) subsets. Feature values were standardized 
using z-scores on the training dataset and then                
applied to the test data. 

To address the challenge of overfitting, it is                 
essential to remove irrelevant and redundant                 
features that do not contribute to the predictive    
accuracy of a model. This approach not only leads to 
faster and more cost-effective models but also          
enhances model performance. To achieve this, we 
employed various feature selection methods,               
including Recursive Feature Elimination (RFE),             
Analysis of Variance (ANOVA), Maximum Relevance 
Minimum Redundancy (MRMR), Boruta, and Relief. 
These feature selection techniques refined the             
feature sets, improving the models' performance by 
retaining relevant and non-redundant features (19-21). 
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Classification 
A diverse range of machine learning and                      

classifiers (eXtreme Gradient Boosting (XGBoost), 
Decision Tree (DT), Support Vector Machines (SVM), 
K-Nearest Neighbor (KNN), Logistic Regression (LR), 
Random Forest (RF), and Multilayer Perceptron 
(MLP)) were employed to explore different                   
approaches and identify the most effective ones for 
our specific problem. This allows us to :evaluate 
multiple classifiers, we can assess their strengths and 
weaknesses, and choose the one best suited to our 
dataset prediction task and exploring diverse 
algorithms helps us identify broader trends and              
reduces the risk of relying solely on an algorithm  
potentially specific to the given data. 

Each classifier underwent hyperparameter tuning 
using the training dataset. This process optimizes the 
model's internal configuration to achieve the best 
possible performance (22).  

 

Model evaluation 
We employed bootstrapping and tested models 

across 1000 bootstraps. This technique involves 
drawing multiple random samples with replacements 
from the original data and generating various                
training and testing sets. By evaluating performance 
across these resampled datasets, we could account 
for variability and gain a more robust understanding 
of the model's generalizability. 

We used several metrics to assess model                
performance, including: 
 Area under the curve (AUC): The Area Under the 
Curve of a Receiver Operating Characteristic (ROC) 
curve is essential for assessing binary classifier             
model effectiveness. The ROC curve visually              
demonstrates the model's ability to differentiate               
between two classes at varying thresholds .The ROC 
curve was constructed by plotting the true positive 
rate (TPR) against the false positive rate (FPR) at 
each threshold, providing insight into the model’s 
performance across decision boundaries. TPR and 
FPR calculations across all thresholds facilitate a 
thorough evaluation of the model .The AUC measures 
the model's overall discriminative capacity. An AUC 
of 0.5 indicates no discrimination, while an AUC of 1.0 
represents perfect classification. Consequently, a 
higher AUC signifies better classifier performance, 
making it an essential metric for model evaluation 
and comparison. 
 Specificity (SPE): Specificity, often abbreviated as 
SPE, is a crucial metric for evaluating the                        
performance of a binary classifier. It measures the 
ability of the model to correctly identify actual                
negative cases. In other words, specificity indicates 
the proportion of patients who do not experience an 
event (e.g., radiation-induced complications) and are 
accurately classified as not having the event .A high 
specificity means that the model minimizes false             
positives, ensuring that patients without                     

complications are correctly identified. This is                   
important in clinical settings, as high specificity helps 
prevent unnecessary treatments or interventions for 
patients who are not at risk. 
Accuracy (ACC): Accuracy is a key metric for               
assessing binary classifier performance. It quantifies 
the ratio of correctly identified cases to the total               
cases. Essentially, accuracy reflects the model’s               
prediction reliability for both the target event and its 
absence. Elevated accuracy indicates model             
dependability, critical in clinical contexts where             
precise patient classification influences management 
decisions. 
Sensitivity (SEN): Sensitivity, or the true positive 
rate, quantifies a binary classifier's accuracy in             
identifying positive instances. It measures the ratio of 
correctly classified positive cases to the total actual 
positive cases .A high sensitivity is vital in clinical 
settings to ensure accurate detection of patients         
requiring intervention, thus minimizing false               
negatives. In conclusion, sensitivity serves as a criti-
cal metric for assessing the diagnostic performance of 
models in identifying at-risk individuals. 

 

Statistical validation  
 We employed k-fold cross-validation (k=5) to 

further validate the performance of our models. This 
technique divides the data into k folds, trains the 
model on k-1 folds, and tests it on the remaining fold. 
This process is repeated k times, and the average  
performance across all folds provides a more robust 
estimate of model generalizability compared to a  
single train-test split. An array of performance                
metrics and evaluation measures were calculated, 
and tailored to the specific problem and the type of 
model being employed. These measures included 
common results such as the AUC, SPE, ACC, and SEN. 
These metrics provided a reliable estimate of the 
model's ability to generalize to unseen data and             
significantly contributed to enhancing the validity of 
the research (23, 24). 

 
 

RESULTS 
 

Among the 60 patients with prostate cancer, 15 
(approximately 25%) developed proctitis of grade 2 
or higher, and 21 patients (around 35%) experienced 
cystitis of grade 2 or higher. Figures 1 and 2 present 
the performance evaluation of various models that 
built on test data set in predicting rectal and bladder 
toxicities. We evaluated three different models, each 
using unique feature selection and classification 
methods, for predicting rectal toxicity in prostate 
cancer radiotherapy.  
Dosiomics model: This model combined Boruta  
feature selection with the KNN classifier, ACC of 0.76, 
SPE of 0.77, and AUC of 0.83. It demonstrated            
balanced performance in both accuracy and                 
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specificity, making it potentially valuable for                  
identifying rectal toxicity cases. 
Radiomics model: This model, utilizing ANOVA       
feature selection and RF classification, achieved an 
exceptional ACC of 0.85 and a high SPE of 0.92, 
though its AUC was 0.72. This highlights its                 
robustness in predicting rectal toxicity. 
Combined radiomic and dosiomic features          
model: This model, incorporating ANOVA and 
XGBoost, yielded promising results with an ACC of 
0.77, SPE of 0.93, and AUC of 0.71. While the AUC 
may suggest room for improvement, the model             
exhibited high specificity alongside substantial         
predictive power. 

Three models were evaluated for their ability to 
predict bladder toxicity: 
Dosiomics model: This model, utilizing Relief               
feature selection and KNN classification, achieved an 
ACC of 0.66, SPE of 0.64, and AUC of 0.76. While 
demonstrating reasonable predictive power (AUC), 
its overall performance suggests room for                   
improvement. 
Radiomics model: This model, incorporating Boruta 
feature selection and SVM classification, achieved an 
ACC of 0.69, SPE of 0.67, and AUC of 0.68. It displayed 
potential, particularly in accuracy and specificity, 
indicating its capability in bladder toxicity prediction, 
but further refinement might be needed. 
Combined radiomic and dosiomic features               
model: This model, utilizing Relief feature selection 
and RF classification, achieved an ACC of 0.61, a high 
SPE of 0.75, and an AUC of 0.68. This model excelled 
in specificity, highlighting its ability to accurately 

identify bladder toxicity cases, but its overall                 
accuracy may require further optimization. 

This study contributes to understanding                      
radiomics and dosiomics for predicting toxicities in 
prostate cancer radiotherapy, paving the way for   
personalized treatment strategies. Further validation 
and refinement are crucial for clinical                        
implementation, potentially revolutionizing                  
management of these toxicities and improving patient 
care. 

 

 

 

DISCUSSION 
 

Predicting radiation-induced complications in 
prostate cancer radiotherapy remains challenging 
due to limitations in current dosimetric parameters, 
such as inadequate consideration of individual                
anatomical variations and tissue sensitivities. In our 
study, we explored the potential of CT radiomics and 
dosiomics to enhance prediction accuracy for acute 
bladder and rectal toxicities associated with                   
radiotherapy. 

Our findings highlight that specific radiomic                
features extracted from pre-treatment CT images, 
combined with 3D dose distribution data, yielded 
promising results in predicting these toxicities. This 
suggests that integrating radiomics and dosiomics 
alongside conventional dosimetry could improve the 
precision of complication prediction. Notably, we 
achieved an AUC of 0.75 and 0.83 for urinary and  
gastrointestinal injuries, respectively, underscoring 
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Figure 2. Performance comparison of various feature selection 
methods (ANOVA, Boruta, MRMR, RFE) and machine learning 

algorithms (KNN, LR, MLP, RF, XGB) on predicting bladder 
toxicity using CT, Dose, and CT-Dose datasets. The                   

performance metrics - (a) SPE, (b) AUC, (c) ACC, and SEN (d) - 
for each combination of feature selection and classification 

algorithm on the test dataset. 

(a) (b) 

Figure 2. Performance comparison of various feature selection 
methods (ANOVA, Boruta, MRMR, RFE) and machine learning 

algorithms (KNN, LR, MLP, RF, XGB) on predicting bladder 
toxicity using CT, Dose, and CT-Dose datasets. The                   

performance metrics - (a) SPE, (b) AUC, (c) ACC, and SEN (d) - 
for each combination of feature selection and classification 

algorithm on the test dataset. 

Figure 1.  Performance comparison of various feature                
selection methods (ANOVA, Boruta, MRMR, RFE) and machine 

learning algorithms (KNN, LR, MLP, RF, XGB) on predicting 
rectal toxicity using CT, Dose, and CT-Dose datasets. The             

performance metrics - (a) SPE, (b) AUC, (c) ACC, and SEN (d)- 
for each combination of feature selection and classification 

algorithm on the test dataset. 
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the predictive potential of CT and dose-derived               
features. 

Several studies in radiomics and dosiomics have 
also demonstrated promising results in predicting 
complications induced by radiotherapy. For instance, 
Van Dijk et al. (25) developed predictive models for 
late xerostomia and sticky saliva post-radiotherapy 
using CT image features, showing superior                      
performance over clinical models. Similarly, Kraus et 
al. (26) utilized dosiomics and radiomics features to 
predict pneumonitis following thoracic SBRT, further 
illustrating the utility of these approaches in different 
clinical contexts. Also, Qingying Yang et al. (27) created 
a strong radiomics model utilizing non-contrast CT 
scans for predicting pulmonary hypertension (PH). 
Their study compared this model’s performance to 
prediction models based on clinical and radiological 
factors using ten different machine learning                   
algorithms. The findings revealed that the SVM model 
had the highest prediction accuracy, with an AUC of 
0.87 and an accuracy of 0.83. Moreover, the                      
combined predictive model, which included                
radiomics features alongside clinical and radiological 
parameters, showed the best performance in                  
forecasting pH. 

In this study, SVM was utilized to develop models, 
as it is considered appropriate for small sample sizes 
(28). Validation of the models was done through                 
nested cross-validation. A recent study by Bourbonne 
et al. (29) indicated that relying on a single random 
split of data for training and testing with small              
sample sizes could yield unreliable results. They             
suggested using nested cross-validation in the        
absence of external validation. The use of nested 
cross-validation for small sample sizes is                        
recommended (30) and has been implemented in           
various studies (31). 

In recent years, advancements in radiotherapy 
outcome modeling have aimed to develop models 
that precisely predict radiotherapy endpoints while 
avoiding issues of overfitting and under fitting. This 
has been accomplished by assessing a range of              
contributing parameters. Pre-treatment factors,             
including radiomic features derived from patient  
imaging, play a crucial role in helping clinicians            
identify patients who may benefit from dose                 
escalation or reduction (32, 33). Our study adds to this 
field by utilizing outcome modeling to predict toxicity 
using high-quality CT images, offering a simple,             
non-invasive, and cost-effective approach. 

Moving forward, our ongoing research focuses on 
developing robust models to predict toxicity using 
high-quality CT images and 3D dose distribution 
through outcome modeling (32). Future efforts should 
include validating our findings with larger and more 
diverse patient populations to strengthen the               
generalizability and clinical utility of our models (25, 

34).  

CONCLUSION 
 

This study demonstrates the promising advances 
in using radiomics and dosiomics for toxicity                
prediction in prostate cancer radiotherapy, further 
investigation with comprehensive validation studies 
and broader demographic inclusion is essential. 
These efforts will facilitate informed treatment              
decisions and ultimately improve patient outcomes. 
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