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Identification of biomarkers for radiation-induced coronary 
heart disease in breast cancer patients 

INTRODUCTION 

Radiotherapy (RT) is a widely used and effective 
treatment modality in breast cancer management, 
primarily aimed at reducing local recurrence and  
improving overall survival rates. Radiation therapy 
(RT) can increase the risk of cardiac complications, 
such as heart failure, coronary artery disease, and 
myocardial infarction, especially in patients with              
left-sided breast cancer (1-3). Coronary artery disease, 
a form of cardiovascular disease, ranks as the second 
leading cause of death among breast cancer patients 
treated with radiotherapy. The pathogenesis of               
radiation-induced coronary heart disease (RICHD) is 
complex, involving multiple factors such as                     
inflammation, fibrosis, vascular injury, and                     
endothelial dysfunction (4). The impact of RT on the 
heart is influenced by various factors, including the 
radiation dose, treatment techniques, and individual 
risk factors of the patient. Studies have shown that 
for every 10 Gy increase in radiation dose to the 
heart, the risk of coronary artery disease and heart 
failure significantly rises (5). Deep inspiration                  
breath-hold (DIBH) techniques significantly decrease 
heart radiation exposure, reducing cardiac damage 
risk (6, 7). Modern radiotherapy technologies,                
including intensity-modulated radiotherapy (IMRT) 

and image-guided radiotherapy (IGRT), have shown 
potential in effectively reducing cardiac radiation 
exposure (8, 9). RICHD may manifest years or even  
decades after treatment, significantly affecting the 
patient's quality of life and survival rate.                     
Strengthening radiotherapy management, controlling 
radiation doses, administering preventive                       
medications, and controlling hypertension early have 
all been proven to help reduce the risk of RICHD (10-

12). Screening for RICHD biomarkers facilitates early 
detection of cardiac damage and enhances long-term 
quality of life in breast cancer patients (13, 14). 

There is currently no consensus regarding                    
biomarkers for RICHD. Integrating the Cancer                  
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases for bioinformatic analysis facilitates 
the identification of key hub genes essential for               
cancer progression and prognosis (15, 16). Research 
indicates that radiation-induced cardiovascular                
damage is frequently associated with endothelial cell 
injury and increased local inflammation, with specific 
intersecting genes potentially playing crucial roles in 
these processes. Moreover, the use of bioinformatics 
tools to analyze these datasets can deepen our       
understanding of the molecular mechanisms behind 
various diseases, revealing potential therapeutic             
targets and prognostic biomarkers (17, 18). Researchers 
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can validate the clinical significance of these                     
biomarkers by utilizing protein-protein interaction 
(PPI) network and survival analyses (19, 20). This              
pioneering study examines the biological roles of  
differentially expressed genes in breast cancer                 
patients undergoing radiotherapy compared to those 
not receiving it, as well as in coronary artery disease. 
It also proposes preliminary hypotheses on key genes 
and the pathogenesis of RICHD based on existing  
literature. This will provide theoretical support for 
the future development of novel molecular targeted 
interventions. 

 

 

MATERIALS AND METHODS 
 

Data collection and processing 
The mRNA expression profiles, clinical-

pathological features, and prognostic factors of breast 
invasive carcinoma samples with radiotherapy               
information were obtained from the TCGA database 
(https://portal.gdc.cancer.gov/). Data in TPM format 
were log2(TPM + 1) normalized after extraction. A 
total of 165 breast cancer samples, comprising 73 
treated with radiotherapy and 92 untreated, were 
included for analysis after ensuring the availability of 
both RNA-seq data and clinical information.                    
Additionally, datasets related to coronary heart             
disease were sourced from the GEO database in              
MINiML format. For datasets that had not undergone 
normalization, a log2 transformation was uniformly 
applied. Non-standardized datasets were                         
standardized using the normalize. Quantiles function 
from the preprocess Core package in R, and batch 
effects were removed with the removeBatchEffect 
function from the limma package in R software (R 
software, version 4.0.3, Auckland, New Zealand). 

 
Differential gene acquisition 

We utilized the Limma package (version 3.40.2) in 
R software (R software, version 4.0.3, Auckland, New 
Zealand ) to analyze differential mRNA expression in 
the TCGA and GEO datasets. Adjusted P-values were 
evaluated to mitigate false-positive outcomes in 
TCGA and GTEx datasets. Differentially expressed 
mRNA was identified using a threshold of an adjusted 
P-value below 0.05 and a log2(fold change) exceeding 
±1.3. 

 

GO Enrichment and KEGG Pathway Analysis 

The DAVID（the Database for Annotation,                    

Visualization and Integrated Discovery, https://

david.ncifcrf.gov/home.jsp）online tool (https://

david.ncifcrf.gov/home.jsp) was employed for                  
functional annotation of differentially expressed 
genes (DEGs) using Gene Ontology (GO) to clarify 
their molecular functions, biological processes, and 
cellular components. Additionally, signaling                   
pathways were visualized using the Kyoto                  
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Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis. 

 

Hub gene expression and prognostic analysis 
The GEPIA (Gene Expression Profiling Interactive 

Analysis) website was employed to compare the               
expression levels of key hub genes in breast cancer 
tissues versus normal tissues, with a significance 
threshold of P≤0.05. Additionally, the Kaplan-Meier 
Plotter online database (https://www.kmplot.com/) 
was employed to analyze the prognostic status of hub 
genes using receiver operating characteristic (ROC) 
curves, with a follow-up period of six months. 

 

Gene expression analysis 
We downloaded single-cell data in .h5 format, 

containing 45,000 immune cells from eight breast 
cancer cases, along with annotation results from               
Tumor Immune Single-cell Hub (TISCH) database. 
The R packages MAESTRO and Seurat were utilized 
for single-cell data processing and analysis, applying 
the t-distributed stochastic neighborhood embedding 
(t-SNE) method for cellular clustering. 

 

 

RESULTS 
 

Analysis of differential gene expression in the TCGA 
breast cancer dataset 

A differential gene expression analysis was                  
performed on the TCGA breast cancer dataset,                
comparing patients who underwent radiotherapy 
(n=73) to those who did not (n=92), using a                    
significance threshold of P<0.05. This analysis                 
identified 34 upregulated genes (C4orf19, SGCG, 
MT1M, DGAT2, SLC19A3, BAIAP2L2, MNX1, INSM1, 
AGT, DEPP1, ADAMTS1, IFI44L, SLC5A8, HBA2, 
TGFBR3, OSR1, CHI3L2, USP18, OLFM2, OBP2B, 
DOC2A, CHRDL1, ETV7, LEP, MX1, STC1, ASS1, NTN1, 
CST2, SAMD9L, ZNF750, IL6, and SERPINE2) and 16 
downregulated genes (SPINK4, CLIC6, CABCOCO1, 
FLRT3, CAMK2B, MS4A8, IGFL2, HSPA2, ABHD2, 
OLFML3, SLC1A1, CEMIP, RAB31, MKX, DPYSL4, and 
RLN2). Figure 1 displays a volcano plot (1A) and a 
heatmap (1B) depicting differential gene expression. 

illustrates gene expression changes, where red 
dots indicate genes meeting both fold change (FC) 
and p-value thresholds, blue dots represent genes 
meeting only the p-value threshold, green dots              
denote genes meeting only the FC threshold, and grey 
dots signify genes that do not meet either threshold, 
indicating non-significant or minimal expression 
changes. (B) The heatmap displays sample clustering 
based on distribution from the outer to inner 
groups.) 

GO and KEGG pathway analyses were conducted 
on the TCGA breast cancer dataset to examine                  
differential gene expression. In the GO enrichment 
analysis, bar colors denote distinct GO term types, 
while bar lengths reflect the count of genes enriched 
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in each term. The 15 most significant results, each 
with p<0.05, were presented. The up-regulated genes 
are primarily associated with pathways such as               
endocrine pancreas development, signaling receptor 
activator activity, sulfur compound binding, extrinsic 
components of the membrane, and collagen-
containing extracellular matrix. Conversely, the down
-regulated genes are mainly linked to pathways                
including positive regulation of calcium ion and               
endocytic vesicle. In the KEGG pathway enrichment 
results, different colors indicate the significance of 
functional enrichment, with larger values                              
corresponding to smaller p-values. The size of the 
circles represents the number of enriched genes, with 
larger circles indicating a greater number of genes. 
The upregulated genes are predominantly associated 
with the pathway of hypertrophic cardiomyopathy, 
while the downregulated genes are primarily linked 
to lipid metabolism and atherosclerosis.  

Differential gene and enrichment analysis of CHD 
in GEO 

We selected GSE23561 (GPL10775, Coronary heart 
disease: n=6, control group: n=9) and GSE120774 
(GPL6244, Coronary heart disease: n=17, control 
group: n=19) for differential gene queries.Differential 
up-regulated genes included 24 and down-regulated 
genes included 83 in the coronary heart disease 
group (n=23) and normal group (n=28). The                  
differentially expressed gene profiles are shown in 
volcano (figure 2A) and heatmap (figure 2B).                
GO-enriched pathways were mainly endocytic vesicle, 
orgaric acid binding, blood microparticle and                 
detection of chemical stimulus involved,                          
KEGG-enriched pathways were mainly Viral                       
myocarditis,     Olfactory     transduction     and     Rap1                   

signaling pathway. 

Expression and prognostic analysis of intersecting 
genes 

 Hemoglobin A2 (HBA2) was the intersecting gene 
between the TCGA dataset and the GEO dataset.  
Analysis of HBA2 expression in breast cancer cancers 
and normal tissues using the GEPIA website (figure 
3A) revealed a statistical difference (*represents 
p<0.05) in mRNA gene expression. Kaplan-Meier          
Plotter analysis revealed a significant prognostic             
difference in breast cancer patients based on HBA2 
expression levels (HR=0.87, 95% CI 0.78-0.96, 
P=0.005) (figure 3B). 

HBA2 expression in cells from breast cancer             
patients 

Based on single-cell data from eight breast cancer 
samples totaling 45,000 immune cells, we found               
significant differences in the expression of the HBA2 
gene in different cell types (figure 4A, figure 4B). The 
high expression of the gene in CD8T cells suggests 
that HBA2 may play an important biological function 
in this cell type, which informs further studies on the 
role of HBA2 in immune-related cells. Meanwhile, the 
moderate expression levels in fibroblasts and mast 
cells may also suggest a specific role for the gene in 
these cell types (figure 4C). 
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Figure 1. The study examines differential gene expression in 
breast cancer patients undergoing radiation therapy           

compared to those who do not. (A) The volcano plot illustrates 
gene expression changes, where red dots indicate genes 

meeting both fold change (FC) and p-value thresholds, blue 
dots represent genes meeting only the p-value threshold, 

green dots denote genes meeting only the FC threshold, and 
grey dots signify genes that do not meet either threshold, 

indicating non-significant or minimal expression changes. (B) 
The heatmap displays sample clustering based on distribution 

from the outer to inner groups). 

Figure 2. Differential gene expression in the CHD dataset in 
GEO (A. volcano plot; B. heat map). 

Figure 3. GEPIA differential expression profile of HBA2 and 
Kaplan-Meier Plotter survival analysis (A. GEPIA differential 

expression profile, B. HBA2 high and low expression in Kaplan-
Meier Plotter for survival analysis of breast cancer patients). 

 [
 D

O
I:

 1
0.

61
18

6/
ijr

r.
23

.2
.2

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

rr
.c

om
 o

n 
20

26
-0

1-
29

 ]
 

                               3 / 6

http://dx.doi.org/10.61186/ijrr.23.2.28
http://ijrr.com/article-1-6423-en.html


 
 

DISCUSSION 
 

RT is an important modality in the treatment of 
breast cancer, although it is gaining attention due to 
RICHD. By identifying differentially expressed genes 
associated with RICHD, we can better understand the 
mechanisms through which radiation therapy affects 
cardiac health in breast cancer patients, potentially 
providing biomarkers and therapeutic targets for 
clinical applications. Numerous studies employing 
bioinformatics have analyzed breast cancer gene  
expression profiles, identifying crucial genes                  
associated with disease progression and prognosis 
(22). Additionally, in addressing radiation-induced 
cardiac injury, researchers are actively exploring  
different biomarkers in hopes of improving patient 
outcomes (23). Integrating data from the TCGA and 
GEO databases enables researchers to more                     
comprehensively identify RICHD-associated genes, 
thus providing a theoretical basis for future clinical 
research and therapeutic strategies (24). 

Our results indicate that, compared to breast               
cancer patients who did not undergo radiation               
therapy, those who did showed 34 upregulated genes 
and 16 downregulated genes. This finding highlights 
the influence of radiation therapy on the molecular 
profile of breast cancer, indicating that it may trigger 
specific gene expression alterations that enhance our 
understanding of treatment response and resistance 
mechanisms in patients (25). GO pathway enrichment 
analysis suggests these genes may play pivotal roles 
in endocrine system development, signal                         
transduction, cell membrane structure and function, 
and the maintenance and remodeling of the                    
extracellular matrix (ECM) (26-29). Dynamic changes in 
the ECM are closely associated with tissue repair and 
regeneration in various organs, including the heart, 
liver, and nervous system (27, 30). KEGG pathway              
enrichment analysis of the differentially expressed 
genes indicated links to hypertrophic                              
cardiomyopathy (HCM) and lipid metabolism, where 

disruptions in lipid homeostasis may worsen           
atherosclerosis and result in significant                                
cardiovascular events (31). 

Our findings identified HBA2 as a key gene for 
RICHD. In breast cancer patients, coronary artery  
disease risk factors such as hypertension, diabetes, 
and hypercholesterolemia may be affected by HBA2 
gene variants (32). Other studies have shown that 
HBA2 expression levels are associated with cardiac 
function changes, possibly affecting heart health            
indirectly by influencing oxygen transport in the 
blood (33). Thus, studying HBA2 not only aids in              
understanding RICHD risk in breast cancer patients 
but may also provide a foundation for developing new 
therapeutic strategies. Our GEPIA analysis indicated a 
statistically significant difference in HBA2 mRNA              
expression between cancerous and normal breast 
tissues. This finding aligns with other studies,               
suggesting that HBA2 may play a vital role in breast 
cancer initiation and progression (34). Our                         
Kaplan-Meier Plotter analysis revealed a significant 
prognostic difference in breast cancer patients based 
on HBA2 expression levels, aligning with findings 
from other studies. Research by Sun et al. showed 
that high HBA2 expression is associated with                  
extended survival in breast cancer patients, whereas 
low expression correlates with a poorer prognosis (35). 
Moreover, HBA2 expression may relate to tumor 
stage, grade, and other clinicopathological                       
characteristics, further emphasizing its potential as a 
biomarker (36). Therefore, HBA2 expression could 
serve as a predictive factor for breast cancer                    
prognosis and offer new insights for individualized 
treatment (37). Some studies have also identified other 
key targets, e.g., Cui et al. Ring finger protein 146 has 
been linked to the prognosis of breast cancer patients, 
necessitating further validation of these targets (38). 

Single-cell data analysis showed high HBA2                
expression in CD8+ T cells of breast cancer patients, 
suggesting a strong connection to immune responses 
within the tumor microenvironment. CD8+ T cells are 
key effectors of antitumor immunity, and their            
enhanced function is closely linked to tumor                  
prognosis. Studies have indicated that CD8+ T cell 
activity is associated with tumor cell characteristics, 
cytokines in the microenvironment, and the                   
expression levels of tumor-associated antigens (39). In 
breast cancer, CD8+ T cell infiltration generally                
correlates positively with patient survival,                       
particularly in HER2-positive and triple-negative 
breast cancer cases (40). High HBA2 expression may 
reflect adaptive changes in CD8+ T cells within the 
tumor microenvironment, potentially linked to tumor 
cell metabolic states and immune evasion                        
mechanisms. Research has shown that tumor cells 
can suppress CD8+ T cell function by altering                 
metabolic pathways, thereby promoting tumor 
growth and metastasis (41). Additionally, HBA2               
expression might correlate with immunosuppressive 
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Figure 4. The expression of HBA2 in breast cancer patient cells 
is illustrated through various visualizations. (A. A single-cell 

clustering t-SNE plot where distinct cell types are indicated by 
different colors; B. A t-SNE plot showing the distribution of 
selected gene expressions across different cells, with color 

intensity reflecting expression levels-darker shades indicate 
lower expression, while brighter shades denote higher             
expression; C. A histogram depicting the abundance of               

selected genes in various cells). 
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factors, such as PD-L1 expression, which help tumor 
cells evade immune surveillance by inhibiting CD8+ T 
cell activity (42). Therefore, HBA2's high expression in 
CD8+ T cells may not only indicate changes in the 
tumor micro environment but also serve as a                
potential target for breast cancer immunotherapy. 
Future studies should investigate HBA2's specific role 
in CD8+ T cell function and its potential applications 
in breast cancer immunotherapy (43). 

This study has certain limitations. First,                    
heterogeneity and potential bias in the database data 
sources could impact the reliability and general             
applicability of our findings, especially with smaller 
sample sizes. Additionally, limited clinical                           
information in many data sources restricts deeper 
analysis of the relationship between gene expression, 
disease severity, and patient prognosis. Data                  
insufficiency, version inconsistencies, and update 
frequency within databases may further reduce          
result reproducibility. While tools like GEPIA offer 
convenience, their algorithmic and parameter                  
limitations may impact accuracy. Finally, since the 
identified genes in database analyses indicate                
associations rather than causal relationships, further 
biological experiments are necessary to verify the 
actual role of these key genes in disease. 

 
 

CONCLUSION 
 

The elevated expression of HBA2 in CD8+ T cells 
indicates its potential significance in immune                   
responses and RICHD development, offering a novel 
avenue for precision treatment of RICHD. Future  
research could further explore the specific                  
mechanisms of HBA2 in the pathogenesis of RICHD 
and validate its clinical application potential as a 
therapeutic target, offering more effective                  
personalized treatment options for RICHD patients. 
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