Comparing the results of 3D treatment planning and practical dosimetry in craniospinal radiotherapy using Rando phantom

1Radiation Medicine Department, Nuclear Engineering Faculty, Shahid Beheshti University, Tehran, Iran
2Radiation Medicine Department, Nuclear Engineering Faculty, Shahid Beheshti University, Tehran, Iran
3Radiotherapy Physics Department, Cancer Institute of Tehran, Tehran, Iran
4Medical Physics Department, Medical Faculty, Iran University of Medical Science, Tehran, Iran
5Radiation Medicine Department, Nuclear Engineering Faculty, Shahid Beheshti University, Tehran, Iran

*Corresponding author: Hamidreza Baghani, Nuclear Engineering Faculty, Ray-Medicine Department, Shahid Beheshti University, Tehran, Iran.
Fax: +98 21 22431780
E-mail: Hamidreza.baghani@gmail.com

INTRODUCTION

Medulloblastoma is one of the most common diseases of central nervous system tumors for which craniospinal radiotherapy is used for treatment purposes (1, 2). Treatment planning and radiotherapy of the central nervous system tumors are facing technical challenges which are imposed by the sensitivity of gross tumor location and the normal tissues and organs at risk around the planning target volume (PTV). The treatment targets in craniospinal radiotherapy consists the entire brain and the spine, and the organs at risk are the eye lens, heart, cribriform plate, thyroid and testis (2). Craniospinal radiotherapy causes detrimental changes in the white matter of children’s brain. Consequently this change leads to a reduction in the patient’s learning and mental skills at the learning age (3). It is common among these patients to suffer from disorder in the function of the endocrine glands (like thyroid) and as a consequence of unwanted received doses by these glands. So, it might be the testis (or ovary) that is exposed to scattered radiation from spinal cord of the patient (4). New techniques like radiotherapy coupled with moving the conjunction of radiation fields (5), or conformity...
of cerebral and spinal radiation fields using geometric calculations (1) may reduce the harmful results of radiotherapy. At present, to administer craniospinal radiotherapy, photon beam is used for cerebral PTV, and electron and/or photon beam for spinal PTV. Some of treatment centers, however, have presented the results drawn from using proton beam (6). Using modern instruments to treatment planning and radiotherapy reduces the complexities of this treatment technique and ensures uniformity of dosage in treatment PTV (7). The most effective way to evaluate the accuracy of dosimetry and validity of the treatment planning software is to investigate the radiotherapy in anthropomorphic Rando Phantom that has been used in this research, to compare the results of treatment planning system (TPS) and practical dosimetry. Evaluation of the absorbed dose by organs at risk has been discussed as a secondary objective.

MATERIALS AND METHODS

Dosimetric phantom

RANDO Phantom provides the detailed mapping of dose distribution that is essential for evaluating radiotherapy treatment plans. A Rando phantom produced by the phantom laboratory (USA) was used for radiotherapy. This phantom was a skeleton of a man with 173.5 cm of height and 73.5 Kg of weight in which isosionat plastic was used for the soft tissues, having the normal human skeletal system (8). The Phantom was divided longitudinally into 33 slices each 2.5 cm and all of them used for radiotherapy. Each slice had holes in it to sit the dosimeter for measuring the absorbed dose in radiotherapy and radiography research. Each slice had two pins at its edges; the different slices of Phantom were bound up together by those pins, in order to have a full phantom. To prevent the slices from being torn out and avoiding air gap production among them, the Phantom was surrounded by an assembly composed of two wooden plates placed at the head of the first slice and the end of the last one (9).

Calibration of applied dosimeters and dosimetric method

GR-200 Thermoluminescence crystals produced by PTW Company (Germany) which included LiF (Mg, Cu, P) in the form of tablets with the diameter of 4.5 mm and thickness of 0.8 mm were used in this research (10). 40 dosimeters were used for the different areas inside the phantom and 4 dosimeters for controlling the background radiation. To use these dosimeters, at first the efficiency correction coefficient (ECC) of each TLD’s was calculated and then the calibration curve of the applied TLDs was produced. To produce the calibration curve, 38 dosimeters were divided into several groups, and each group was exposed to a certain amount of gamma rays produced by 60Co machine. The calibration curve of applied dosimeters was as follow in figure 1.

The Fimel TLD reader produced by PTW Company was used to read the TLDs. The liquid nitrogen pressure was 1.1 bars inside it. Every TLD was exposed to temperature at two stages. At the first stage, the exposition lasted for 6 seconds in 15°C. This was done to stabilize the TLD responses. At the second stage, which was the dosimeter reading stage, every TLD was exposed to heat for 35 seconds at 260°C of temperature.
Treatment planning

The Phantom was scanned by Somatom CT Scan machine Produced by Siemens Company (Germany) in prone position. The applied CT system was spiral, and it was able to scan with Smart mA feature.

For treatment planning, the CT images of the phantom were input to the CorePlan 3D treatment Planning software in Dicom format. This software has been produced in Seoul C&J Inc, (Korea) and was able to show the isodose curves in all CT plans. In this software, photon dose is performed by Collapsed Cone Convolution algorithm (in adaptive and non-adaptive way) and Equivalent TAR (ETAR) algorithm, and electron dose calculations by Hogstrom Pencil Beam algorithm. These methods could count tissue inhomogeneity in a reasonable manner \(^{(11, 12)}\), and the absorbed dose in different areas, therefore, can be precisely calculated. In treatment planning, 6 MV X-ray photons were used for irradiation of the brain and upper spine (extending from the first cervical vertebrae down to the first lumbar vertebrae), and 18 MV X-ray photons were used for the lower spine (extending from the second lumbar vertebra down to second sacral vertebrae). In order to avoid overlap between cranial and upper spine fields, the couch was given an angle of 4 degree and 9 for the collimators of cranial fields (figure 2). The treatment targets in the treatment planning included the brain, upper and lower spines, Organs at risk like the lens, thyroid, the heart and testis. The reference points were set at PTV centers of brain, upper and lower spine. The radiation fields were configured in a way that the absorbed dose in these points would be 50 cGy.

Set-up for irradiation (treatment)

Varian linear accelerator 2100C/D model (USA), was used for craniospinal radiotherapy. This accelerator is able to produce X rays with energies equal to 6 MV and 18 MV and electron beams with energies equal to 6 MeV, 9 MeV, 12 MeV, 15 MeV and 18 MeV. For radiotherapy, the phantom was in prone position. (Another position in which the phantom can be laid is supine \(^{(13)}\)). In order to avoid overlap between cranial and upper spine fields, the conjunction of orthogonal fields was adjusted by changing the position of the couch and the collimators of the cranial fields. The couch was given 4 degrees of angle (clockwise) for the left lateral cranial field and 4 degrees (anticlockwise) for the right lateral cranial one. The cranial field collimators were also rotated 9 degrees (clockwise). Because of the long length of the spinal cord, two spinal fields were used to entirety cover the spinal PTV and achieve dose uniformity across the spinal cord \(^{(14)}\). The upper spine was considered to be extending from the first cervical vertebrae down to the first lumbar vertebrae, and the lower spine from the second lumbar vertebra down to the second sacral vertebrae. Like the treatment planning stage, for the upper spine 6 MV and for the lower spine 18 MV X-ray was used. Monitor unit of the machine was adjusted to deliver 50 cGy to ICRU reference point. For irradiation of the brain and spinal cord, source to axis distance (SAD), and source to surface distance (SSD) technique were used, respectively.

40 Thermoluminescence dosimeters were used in practical dosimetry. These dosimeters were planted inside the brain, at
the conjunction of cranial radiation fields and upper spine radiation field, thyroid, heart and testis.

RESULTS

The results of treatment planning

The results of treatment planning system were divided into quantitative and qualitative groups. In the qualitative group, isodose curves in the axial slices, where treatment targets and organs at risk have been located, were presented. Treatment targets and organs at risk have been separately margined in those slices. Isodose curves are differentiated by different colors. Doses associated with each color have been presented at the right top of each image. Figures 3, 4, 5, 6 and 7 are related to brain PTV and eye lens, thyroid, heart, conjunction site of cranial and upper spine fields and testis, respectively.

In the quantitative group, dose volume histograms (DVH) associated with the treatment targets and the organs at risk have been displayed in figure 8. The large amount of dosimetric data that must have been analyzed, while evaluating the treatment plan had prompted the development of new methods of condensing and presenting
the data in more easily understandable formats. One of such data reduction tools has been the DVH. The diagram was very useful for calculation of average absorbed dose and dose uniformity in target volume (2). Each color in every diagram indicated a target or an organ at risk. Each organ associated with each color has been presented at the right top of the image. It could be seen that brain PTV, upper and lower spine had received uniform dose, hence the absorbed dose by volume of organs at risk was nonuniform.

Using isodose and DVH curves related to each organ, one can calculate the average absorbed dose in the treatment targets and organs at risk. The following table (table 1) shows the absorbed dose in these areas.

Table 1. Relative absorbed dose in different regions resulted from treatment planning system (to delivery of 50 cGy to the reference point).

<table>
<thead>
<tr>
<th>Interested area</th>
<th>Relative absorbed dose (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>102</td>
</tr>
<tr>
<td>Overlap area of cranial and upper spine fields</td>
<td>90</td>
</tr>
<tr>
<td>Left eye</td>
<td>28</td>
</tr>
<tr>
<td>Right eye</td>
<td>34</td>
</tr>
<tr>
<td>Thyroid</td>
<td>48</td>
</tr>
<tr>
<td>Heart</td>
<td>46</td>
</tr>
<tr>
<td>Overlap area of upper and lower spine fields</td>
<td>150</td>
</tr>
<tr>
<td>Testis</td>
<td>Very small</td>
</tr>
</tbody>
</table>
The results of Practical Dosimetry

In order to determine the absorbed dose, at the practical stage, the dosimeters were located inside the organs of interest (figure 9), and the average dose coming out of all these dosimeters in the organ were calculated. For elimination of background effects, 4 TLDs were used during radiotherapy.

The results of the practical dosimetry in the Phantom have been presented in the following table (table 2). It must be mentioned that the reported absorbed doses in different regions, both treatment planning and radiotherapy, were normalized to reference dose (50 cGy), to provide better comparison between the results.

Comparing the quantitative results (figure 10), it was concluded that, except the conjunction areas of the cranial and spinal radiation fields, there is no difference higher than 5%, and the results of practical dosimetry were consistent with those by the treatment planning system and the consequent with the validity of CorePlan TPS.

Table 2. The results of practical dosimetry in regions of interest (to delivery of 50 cGy to the reference point)

<table>
<thead>
<tr>
<th>Interested area</th>
<th>Minimum relative dose (%)</th>
<th>Maximum relative dose (%)</th>
<th>Average relative dose (%)</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>102</td>
<td>114</td>
<td>106</td>
<td>±0/13</td>
</tr>
<tr>
<td>Overlap area of cranial and upper spine fields</td>
<td>88</td>
<td>147</td>
<td>140</td>
<td>±0/22</td>
</tr>
<tr>
<td>Thyroid</td>
<td>10</td>
<td>86</td>
<td>48</td>
<td>±0/22</td>
</tr>
<tr>
<td>Heart</td>
<td>36</td>
<td>64</td>
<td>44</td>
<td>±0/17</td>
</tr>
<tr>
<td>Overlap area of upper and lower spine fields</td>
<td>136</td>
<td>150</td>
<td>142</td>
<td>±0/14</td>
</tr>
<tr>
<td>Testis</td>
<td>Very small</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DISCUSSION

The only difference in the results was observed in the conjunction areas of the cranial and spinal radiation fields which has been left a matter of further discussion. This might have been caused by errors made in the practical stage, including those caused by radiation field adjustments, inaccuracy in positioning dosimeters in the conjunction of cerebral and upper spinal fields, inherent errors of the used TLDs, the errors of TLD reader machine, or a defect in the software while calculating the dose at the conjunction of cerebral and upper spinal fields. Due to the intense dose gradient in these regions, the occurred errors in positioning of TLDs could have an important role in incoherence of results.

Due to the lack of any holes in spinal cord, eye lens and cribriform plate, it was not possible to measure the dose in these regions using TLD. Moreover, since the holes were way distant from the skin, measuring the absorbed dose by the latter was impossible too.

In spite of the fact that using two spinal radiation fields would lead to better dose distribution across the spinal cord, it caused an overlap area in the conjunction of these fields; thus, the absorbed dose at the conjunction increases. To reduce this effect, the conjunction of these radiation fields was being changed during the treatment (6, 15). Moreover, for spinal radiotherapy, electron beam could be used instead of the photon beam. This made a better separation of the normal tissues from spinal PTV (2, 16). The inhomogeneity of the tissue, however, can have much more effects on the isodose curves of the electron beam and may caused nonuniform distribution of dose across the spinal cord, and leave this area underdosed (2). In craniospinal radiotherapy for Medulloblastoma, the total dose administered to the cerebral PTV (excluding the boost dose administered to posterior fossa) was between 3500 to 4000 cGy and the total administered dose to the spinal PTV is between 3000 and 3500 cGy (17). Considering the total administered dose to the brain was 3600 cGy and that which is administered to the spinal cord is 3200 cGy, the total absorbed dose by the thyroid gland was 1664 cGy at the end of the radiotherapy. As it is shown in the reference (2), the thyroid disorders caused by the direct radiation of ray may vary, which tends to be considered in terms of thyroid stimulation hormone (TSH). Regardless of thyroxin being increasing or decreasing, the cases of disorder tend to occur when the absorbed dose by the whole gland is between 1500 and 5000 cGy. Although the absorbed dose by this organ does not exceed 5000 cGy, it fell in the variation range of the thyroid performance. Generally, this is a matter of debate, because the literature on radiotherapy has not elaborated on the tolerance dose of thyroid. The total dose absorbed by the heart was 1872 cGy which is quite acceptable in comparison with the tolerance dose of this organ that is 4000 cGy (2). The testis receives a lesser dose. So, these glands received a lower dose of scattered rays due to the scattering of X-ray photons across spinal cord, although they are located outside the lower spine radiation field. This result was deduced from testis DVH in figure 10, too. The results of this research have a good accordance with the research by Hood and his colleagues (13). One of the aims of the mentioned research was the validation of ADAC Pinnacle treatment planning in craniospinal radiotherapy. For evaluation of TPS performance, a Rando phantom had been used and dosimetric measurements during treatment had been performed using thermoluminescent dosimeters (TLDs). Other research in this field is related to Mollazade and colleagues (18). In this research the validity and accuracy of RtDoseplan treatment planning software has been evaluated. The results of their research showed that the difference between TPS and dosimetric measurements has been 3% which is similar to the result yielded by the present research.

Planning and dosimetry in craniospinal radiotherapy

ACKNOWLEDGMENT

The authors wish to thank the personnel of Pars Hospital and TLD dosimetry Lab of Shahid Beheshti University of Medical Science and Atomic Energy Agency of Iran, for their valuable assistance in this work.

REFERENCES

11. CorePlan radiation therapy planning system user's guide. Version 3.5.0.5(2007)