|
|
 |
Search published articles |
 |
|
Showing 2 results for Boron Neutron Capture Therapy
Dr. J.g. Fantidis, E. Saitioti, D.v. Bandekas, N. Vordos, Volume 11, Issue 4 (10-2013)
Abstract
Background: Boron Neutron Capture Therapy (BNCT) is a very promising treatment for patients suffering gliobastoma multiforme, an aggressive type of brain cancer, where conventional radiation therapies fail. Thermal neutrons are suitable for the direct treatment of cancers which are located at near-tissue-surface deep-seated tumors need harder, epithermal neutron energy spectra. Materials and Methods: In this work a BNCT facility based on a compact D–D neutron generator, has been simulated using the MCNP4B Monte Carlo code. The materials considered, for the design of the facility, were chosen according to the EU Directive 2002/95/EC, hence, excluded the use of cadmium and lead. Results: An extensive set of calculations performed with MCNP4B Mote Carlo code have show that the combination of TiF3 which integrates a conic part made of D2O, then followed by a TiF3 layer is the optimum moderator design. The use of BiF3 as spectrum shifter and &gamma rays filter, Titanium as fast neutron filter and Lithium as thermal neutron filter is necessary in order to obtain an epithermal neutron beam with high quality. Conclusion: The simulations show that, even if the neutron flux is below the recommended value for clinical treatment, the proposed facility is a good alternative for clinics which cannot afford to build and maintain a small nuclear reactor.
C. Gong, Dr. X. Tang, S. Fatemi, H. Yu, W. Shao, D. Shu, C. Geng, Volume 16, Issue 1 (1-2018)
Abstract
Background: Boron neutron capture therapy (BNCT) is a binary radiotherapy combining biochemical targeting with neutron irradiation. However, monitoring the boron distribution is a fundamental problem in BNCT. Prompt gamma rays emitted by boron capture reaction can be used to address the issue. Materials and Methods: The general-purpose Monte Carlo toolkits Geant4 and MCNP were used for the simulations. A cubic phantom with soft tissue was used to study the prompt gamma emission during BNCT. The Chinese hybrid phantom with arbitrary tumors was constructed and used to acquire the 0.478 MeV prompt gamma rays in BNCT. Tomographic images were reconstructed with the maximum likelihood expectation maximization (MLEM) algorithm. Results: Comparison between MCNP and Geant4 showed a similar gamma rays emission rate in soft tissue. Up to 30 gamma ray peaks were found in the simulation, and 0.478 MeV prompt gamma ray from boron was clearly observed. The single brain tumor with variable diameter from 1 cm to 4 cm in the heterogeneous anthropomorphic phantom was each time found to be recognizable in the reconstructed image. Furthermore, in a patient with four tumors, the variable distance between the source and the tumors leads to a neutron attenuation thus resulting in an inhomogeneous number of prompt gammas. Conclusion: The SPECT system for a heterogeneous phantom in BNCT was simulated with Geant4. The results show that BNCT-SPECT is valid for the reconstruction of the boron capture interaction position for a heterogeneous patient.
|
|