[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Search published articles ::
Showing 1 results for Ldir

J.c. Son, H.o. Jeong, E.k. Lee, S.g. No, D. Park, Ph.d H.y. Chung,
Volume 17, Issue 1 (1-2019)
Abstract

Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed that genes in immune-associated pathways were upregulated while those in cancer-associated pathways were downregulated in skin exposed to LDIR as compared with non-irradiated control skin. Consistently, according to a comparative gene ontology analysis, “antigen presentation and processing” was the most different gene ontology between the LIDR and HDIR transcriptomes. To identify key molecules regulated by LDIR, we constructed a protein-protein interaction network analysis using topological metrics. One of the key molecules with a high network scores was E1A binding protein p300 (EP300), which is a potential target of a new therapeutic strategy to promote anti-tumor immunity. Conclusion: Our results showed that LDIR exposure mainly induced the upregulation of immune-related genes including chemokines (CXCL1, CXCL2, and CXCL5) and interleukins (IL1B, IL11, IL6, IL15, and IL7). Additionally, LDIR induced the upregulation of antigen processing and presentation-related genes including CIITA, HLA-DQB1, and KIF26A, but these genes were downregulated in HDIR-exposed skin. Our protein network interaction results indicated that EP300 is downregulated by the immune response in skin after LDIR exposure.
 


Page 1 from 1     

International Journal of Radiation Research
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4710