[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Search published articles ::
Showing 2 results for Image-Guided Radiotherapy

M. Zehtabian, R. Faghihi, Dr. M.a. Mosleh-Shirazi, A.r. Shakibafard, M. Mohammadi, M. Baradaran-Ghahfarokhi,
Volume 10, Issue 2 (9-2012)
Abstract

Background: The aim of this work was to study the feasibility of constructing a fast thorax model suitable for simulating lung motion due to respiration using only one CT dataset. Materials and Methods: For each of six patients with different thorax sizes, two sets of CT images were obtained in single-breath-hold inhale and exhale stages in the supine position. The CT images were then analyzed by measurements of the displacements due to respiration in the thorax region. Lung and thorax were 3D reconstructed and then transferred to the ABAQUS software for biomechanical fast finite element (FFE) modeling. The FFE model parameters were tuned based on three of the patients, and then was tested in a predictive mode for the remaining patients to predict lung and thorax motion and deformation following respiration. Results: Starting from end-exhale stage, the model, tuned for a patient created lung wall motion at end-inhale stage that matched the measurements for that patient within 1 mm (its limit of accuracy). In the predictive mode, the mean discrepancy between the imaged landmarks and those predicted by the model (formed from averaged data of two patients) was 4.2 mm. The average computation time in the fast predictive mode was 89 sec. Conclusion: Fast prediction of approximate, lung and thorax shapes in the respiratory cycle has been feasible due to the linear elastic material approximation, used in the FFE model. Iran. J. Radiat. Res., 2012 10(2): 73‐81
K. Venkatesan, C.j. Raphael, K.m. Varghese, P. Gopu, S. Sivakumar, M. Boban, N.a.n. Raj, K. Senthilnathan, Ph.d., P. Ramesh Babu,
Volume 18, Issue 3 (7-2020)
Abstract

Background: To study and analyze the variations in delivered doses to rectum and bladder of carcinoma prostate patients by using kilo Voltage (kV) ‘Cone Beam Computed Tomography’ (CBCT) images. Materials and Methods: 2-Dimensional kilo Voltage (2D kV) Imaging and CBCT were done for seven prostate cancer patients. The deviations among their shifts were correlated and the volumetric changes of the rectum and bladder were analyzed. Rectum and bladder contours were redrawn on every boost fractions and dose calculation were performed on CBCT images to study the effect on dose volume histograms. Results: A correlation coefficient for set-up variations was within 0.78 for all directions between CBCT soft tissue matching and kV bone match. The mean deviation of bladder and rectum volume over the boost fractions was -12% to +9% (SD 31cc to 70cc) and -10.2% to+12% (SD 3.1cc to14.9cc), respectively. Bladder mean dose variation was <1.5Gy for all three positions whereas it was <3.65Gy for rectum. D1% dose deviation from reference plan for bladder was 1.1Gy (CBCT matched position), 1.4Gy (kV matched position), and 1.7Gy (no correction), and for rectum, the deviations were 1.2Gy, 2.2Gy, 3.6Gy, respectively. No significant deviation was found statistically significant at the low dose region. Conclusion: It is possible to achieve good dose delivery and conformity in target (prostate) with CBCT image guidance rather than kV bone match, but dose contribution to the rectum is dependent on the patient’s anatomy, bladder filling, and rectum filling, pertaining to the day of examination.


Page 1 from 1     

International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 38 queries by YEKTAWEB 4714