Radiation dose of head and abdomen-pelvis computed tomography examinations using size-specific dose estimate

M. Ahmadifard¹, M. Bakhshandeh², M. Mohammadbeigi³, A. Mohammadbeigi³, K. Khoshgard⁵

¹Radiobiology and Radiation Protection Dept., School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
²Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
³Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
⁴Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
⁵Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

Original article

*Corresponding author:
Mohsen Bakhshandeh, Ph.D.,
E-mail: mbakhshandeh@sbmu.ac.ir

Received: January 2020
Final revised: August 2021
Accepted: August 2021
DOI: 10.52547/ijrr.20.1.28

Keywords: Head imaging, neuroradiology, abdominal imaging, SSDE, TG 204, TG 220.

INTRODUCTION

Nowadays, CT scan is known as a powerful modality for imaging of bone, soft tissue, and vessels. Application of CT scan for diagnosis of neurologic, gastrointestinal, urinary, traumatic injuries and other diseases is widely increased. Computed Tomography (CT) is responsible for 49% of cumulated absorbed dose from all medical exposures according to report No. 160 of National Council on Radiation Protection & Measurements (NCRP) in 2009, although it is accounted just for 16% of all medical imaging examinations (6). The CTDIv and DLP are two dosimetric index for comparison the scanner output exposure in a special phantom with the 16 or 32 cm diameter and can’t be considered as the patient absorbed dose (2).

Today’s researchers are interesting to using SSDE index for determining the DRLs in CT examinations (1, 3, 4). The SSDE is more accurate than CTDIv for estimation of patient dose considering the patient size (5). This index is produced by AAPM in 2011 year and suggested the physicist use the patient effective diameter (Dₑ) for estimation of patient radiation dose (AAPM TG NO.204) (9). Also, AAPM completed this method by introducing the water-equivalent diameter (Dₖ) in 2014 year (AAPM TG NO. 220) (6). We can obtain a body diameter that is equal to the diameter of poly-methyl methacrylate (PMMA) phantom with using the mean CT number in transverse section area of body (6).

For the first time Imai et al. reported the DRLs based on SSDE in pediatric patients by measuring the geometric size (6). Just two studies have investigated the CT scan DRLs based on SSDE in Iran. The first study carried out by Mehdirpour et al. in Shiraz in the year 2019 year for adults (7) and second study was for pediatric patients for chest, head and abdomen-pelvis in Kermanshah city by Mohammadbeigi et al. (1). Although the study of Mehdirpour et al. was in adult but DRLs can be determined as “local” and even in every imaging center according to ICRP. If LDRLs (Local DRLs) be higher than National DRLs the optimization of

ABSTRACT

Background: Concern about radiation risk of computed tomography (CT) scan as a diagnostic modality has increased in recent years. Diagnostic reference levels (DRLs) is one of the tools to optimizing radiation dose of patients. CTDIv (Volume Computed tomography dose index) and DLP (Dose Length product) are used for assessment of DRLs. The CTDIv under/overestimate the patient dose. AAPM has introduced SSDE (Size-specific dose estimates) for estimation of patient. In this study, the DRLs of head and abdomen-pelvis CT examinations of adults is determined using CTDIv, DLP and SSDE. Materials and Methods: 680 CT examinations of head and abdomen-pelvis were collected from PACS (Picture archiving and communication system) in Imam Khomeini and Mostafa Khomeini hospitals. The Dₑ, CF and SSDE calculated using AAPM TG-204 and TG-220. Statistics analysis calculated using SPSS version 18. Results: For abdomen-pelvis third quartile of CTDIv, SSDE and DLP was 9.96, 13.58 and 527 and values of 27.62, 26.79 and 402.90 are determined for head, respectively that are lower than national DRLs. Also, calculated conversion factor (CF) for head and abdomen-pelvis was 0.97 ± 0.75and 1.45 ± 0.17, respectively. Conclusion: DRLs were lower than other studies in this study. Using the AEC (Auto Exposure Control) and different kVp in this hospitals can help optimization of patient dose. The SSDE must be calculate by radiographers to more accurate estimation of patient dose using CFs.
protocols, education of radiographers or equipping of imaging centers is necessary.

There isn’t any study for DRLs among all medical imaging modalities (Nuclear medicine, CT scan, Fluoroscopy, Angiography, Radiography and Mammography) in Ilam city. As we mentioned in first paragraph the CT scan is responsible for 49% of all medical exposure; thus, for the first DRLs establishment in Ilam we focused on CT scan as the more important modality in medical radiation exposures. Many studies have established the CT scan DRLs in different countries (9-12); also same studies carried out in Iran (1, 7, 9, 13, 14). Sohrabi et al. study is the most greatest study in Iran that was carried out in 157 scanner for assessment the radiation dose of head, sinus, chest, and abdomen-pelvis CT examinations to establish the national DRLs (15).

However, there wasn’t any information about CT radiation dose from Ilam, Semnan and Golestan provinces in their study. Also, there wasn’t any information about using SSDE and calculation the conversion factors (CF) in adults’ head. Thus, the radiation dose of abdomen-pelvis and head examinations is determined based on SSDE.

MATERIALS AND METHODS

Hospitals & CT scanners

There are two hospitals in Ilam city, one of the western city of Iran, that both hospitals were included in this study. Imam Khomeini hospital has a 16 slice Siemens scanner (Siemens Healthcare, Somatom Emotion, Germany) and Mustafa Khomeini has a 16 slice Philips CT scanner (Philips Healthcare, Brilliance, Netherland). All two hospitals were equipped with PACS and we had access to CT examination data in PACS viewer (PACSPLUS, South Korea).

Patients and examinations

We assessed head and abdomen-pelvis CT examinations as the most common and high exposure examinations(1). The head examinations were done in a sequential mod and single phase and abdomen-pelvis scans were performed in spiral mod. There wasn’t any AEC in Philips scanner for head examination, also this option didn’t select by radiographers in Siemens scanner. In contrast, the AEC was applied in both scanners for abdomen-pelvis examination.

Data acquisition

Information of protocols, patient diameters and dosimetric indexes were collected from February 2019 to September 2019. Patients with deformity of scanned region and trunked examinations were excluded. Examination data including demographic, age, sex, CTDIv, DLP, kVp, mAs, mA, Pitch and diameters were recorded in a single sheet for every patient.

Diameters measurement and SSDE calculation

The D_{eff} is obtained using caliper tool in PACS viewer (figures 1 and 2). Also the mild-sagittal line in mild slice of whole scan considered for measurement the anterior-posterior diameter and mild-coraline line in mild-slice used for measurement the lateral diameter. D_{eff} calculated using the equation (1) that is recommended by the AAPM Task Group Report No. 204 (5):

$$D_{eff} = \sqrt{\text{AP diameter} \times \text{Lateral diameter}}$$

(1)

Conversion factors (CF) calculation

We need CF factor for calculation the SSDE. Equations 2 and 3 are acquired by experimental and Monte Carlo simulation for calculation the CF that are described in AAPM TG-204. CF describes difference between head or body size with default phantom size of scanner.

For head CT scans:

$$CF = 1.8748 \times 10^{0.6377D_{eff}}$$

(2)

For abdomen-pelvis:

$$CF = 3.7043 \times 10^{0.6377D_{eff}}$$

(3)

Where; the D_{eff} is effective diameter of the body in selected slice.

According to the AAPM TG-204 and TG-220 the SSDE can be obtained by multiplying the CF to CTDIv (equations 4 and 5).

The SSDE calculating equations recommended by AAPM Task Group Report No.220 (65):

$$\text{SSDE} = f_{22x}^{SSDE} \times \text{CTDIv}$$

(4)

$$\text{SSDE} = f_{15x}^{SSDE} \times \text{CTDIv}$$

(5)

Where; the f_{22x}^{SSDE} is CF of abdomen-pelvis, f_{15x}^{SSDE} is CF of 16-cm phantom.

DRLs determining

Median and third quartile of CTDIv, SSDE and DLP were considered for establishment of DRLs (1).

Statistical analysis

All statistical analysis is done using SPSS software (version 18.0, SPSS Inc., Chicago, IL). Krukal-wallis as non-parametric test was used to compare the un-normal parameters with more than three groups and one-way ANOVA test used to compare parameters with normal distribution with more than three groups. Also, Mann-Whitney U test was used for comparison the tow un-normal distribution. Confidence interval of 95% was considered for all statistical tests.
RESULTS

Number of 680 CT examinations (including 340 head examinations and 340 abdomen-pelvis examinations) were obtained. In overall, the 36.5% of subjects were female and 63.5% were male. In head examination, 40.3% of subjects were female and 59.7% of subjects were male, also average age of patients was 48.27 ± 18.95. We evaluated number of 170 cases (50%) of every examination from Imam Reza Khomeini hospital and 170 (50%) cases from Mostafa Khomeini hospital. Mean values of age, conversion factor, lateral diameter, AP diameter, Drik, CTDIv, DLP and SSDE for head and abdomen-pelvis CT examinations are listed in table 1. Also the comparison of present DRLs with other studies based on third quartile and median are summarized in table 2. Mean ± SD of CT parameters that are applied in every examination are listed in table 3, separately.

DISCUSSION

Because of body sensitivity to X-ray and probability of genetic defects, assessment the radiation dose and determining the DRLs in CT examinations to management of patient dose is necessary. Also, considering that the CTDIv and DLP have underestimation to 270% (5) thus using the SSDE is more suitable. Because the CT scan has the highest accumulated radiation dose among all medical exposures it seems the SSDE will be placed on the CT console as a tools to establishment of DRLs and optimization of protocols in future; thus upgrading and using of this index is necessary. In this study for the first time the DRLs established for head and abdomen-pelvis CT examinations and compared with national DRL and other same studies in Iran (7,15).

Table 1. Mean ± SD values of age, conversion factor, lateral diameter and AP diameter, Drik, CTDIv, DLP and SSDE for head and abdomen-pelvis examination.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Head</th>
<th>Abdomen-pelvis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Lateral Diameter (cm)</td>
<td>48.31 ± 19.53</td>
<td>48.18 ± 18.30</td>
</tr>
<tr>
<td>AP Diameter (cm)</td>
<td>15.36 ± 0.75</td>
<td>31.41 ± 3.26</td>
</tr>
<tr>
<td>Effective Diameter (cm)</td>
<td>18.96 ± 0.75</td>
<td>21.26 ± 3.28</td>
</tr>
<tr>
<td>Conversion Factor</td>
<td>0.97 ± 0.75</td>
<td>1.45 ± 0.17</td>
</tr>
<tr>
<td>CTDIv (mGy)</td>
<td>25.38 ± 3.05</td>
<td>8.30 ± 2.44</td>
</tr>
<tr>
<td>DLP (mGy·cm)</td>
<td>389.83 ± 35.81</td>
<td>435.76 ± 140.36</td>
</tr>
<tr>
<td>SSDE (mGy)</td>
<td>24.59 ± 3.02</td>
<td>11.73 ± 2.73</td>
</tr>
</tbody>
</table>

Note: AP = Anterior-to-posterior; CTDIv = Computed Tomography Dose Index; DLP = Dose Length Product, SSDE = Size-specific Dose Estimate.

Table 2. Comparison the DRLs of present study with other studies for CTDIv, DLP and SSDE.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Head</th>
<th>Abdomen-pelvis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTDIv</td>
<td>SSDE</td>
<td>DLP</td>
</tr>
<tr>
<td>Median</td>
<td>8.40</td>
<td>12.12</td>
</tr>
<tr>
<td>America 2017 (12)</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>NDRls 2017 (13)</td>
<td>9.73</td>
<td>-</td>
</tr>
<tr>
<td>Third quartile</td>
<td>13.58</td>
<td>527.0</td>
</tr>
<tr>
<td>America 2017 (12)</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>NDRls 2017 (13)</td>
<td>13.84</td>
<td>-</td>
</tr>
<tr>
<td>Switzerland 2010</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>France 2012 (19)</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>Ireland 2012 (10)</td>
<td>10.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: CTDIv = Volume Computed Tomography Dose Index; DLP = Dose Length Product, SSDE = Size-specific Dose Estimates.

Table 3. Mean ± SD of CT parameters that are applied in every examination, separately.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Brain</th>
<th>Abdomen-pelvis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rot. Time (S)</td>
<td>Thick (mm)</td>
<td>-</td>
</tr>
<tr>
<td>1.02 ± 0.50</td>
<td>6.90 ± 1.23</td>
<td>189.07 ± 5.23</td>
</tr>
<tr>
<td>mAs</td>
<td>114.97 ± 5.01</td>
<td>1.24 ± 0.12</td>
</tr>
<tr>
<td>Pitch</td>
<td>Thick (mm)</td>
<td>-</td>
</tr>
<tr>
<td>0.55 ± 0.05</td>
<td>5.00 ± 0.0</td>
<td>101.76 ± 57.33</td>
</tr>
<tr>
<td>mAs</td>
<td>124.62 ± 5.34</td>
<td>-</td>
</tr>
<tr>
<td>KVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>751.20</td>
<td>447.22</td>
<td>1001</td>
</tr>
</tbody>
</table>

Note: Rotation Time; Thick = Thickness; Note: Rot. Time = Rotation Time.
our results. Main differences of Huda and Tipinis (18) study that cause to obtain lower values for CF in head examination is the type of calculated diameter, in fact they calculated \(D_x \) for head but we calculated \(D_{\text{eff}} \). Another effective factor for this differences is the age, in other words the age groups of Huda and Tipinis (18) just was 15-18 but our study patients had the range of 18-97 years old. Calculated CF was close to one, this means average head size of patients is about 16 cm and a default phantom with size of 16 cm is suitable for estimation of patients’ radiation dose in adults’ head, thus the difference between CT dose index and SSDE will be very low. Every CF factor is lower than one, the estimated CT dose index in CT scanner is higher than patient absorbed dose.

For abdomen-pelvis CT examinations the AEC was active in both hospitals, thus the output exposure was adapted according to attenuation data of localizer. Using three various kVp in Siemens (80, 110 and 140) and Philips (90, 120 and 140) scanner devices can be very helpful for dose optimization. We except radiographers choose various kVp in patients with large size or small size to accuracy of optimization (2). However, there wasn’t difference between the kVp of three age groups; and same kVp was used for all patient in both hospitals. The conversion factor is obtained 1.45 ± 0.17 for abdomen-pelvis that using it we can eliminate the effect of body size on estimation of patient absorbed dose [table 2]. This factor show the CT dose index can be different 45% with SSDE in abdomen-pelvic region. This diversity originated from that the default phantom for abdomen-pelvis is 32 cm but the mean values of measured \(D_{\text{eff}} \) is 25.5 cm and this is cause of high difference of CT dose index with SSDE.

Second and third quartile of DLP, CT dose index and SSDE was lower than all previous studies are listed in table 3 (America (12), Switzerland (11), France (19), Irland (10), Rafsanjan (7) and Iran national DRLs (15)). Although this values shows the scanners exposure of ilam was lower than other studies, but this isn’t mean imaging standards is higher in ilam; because evaluation of image quality and diagnostic value of images is necessary for comparison of imaging standards between different imaging centers (19). The third quartile values of DLP, CT dose index and SSDE was lower than other studies (Switzerland (11), France (19), Irland (10), Rafsanjan (7) and Iran national DRLs (15)). The DRLs for head examination was 48% lower than NDRls in this study and DRLs of abdomen-pelvis was 31% of NDRls. Scanner designing quality is the most effective factor on the patient dose; it itself includes some technical parameters such as filtration type, isocenter distance, collimation, detector efficiency, X-ray tube efficiency as well as reconstruction algorithm. Second effective factor on the patient dose is scan protocol which is selected by the technologist that involves mAs, kVp, pitch number, and slice thickness (10). Thus, variation of these factors is cause of different patient doses in different CT scanners and medical imaging centers. Third effective factor is related to the patient’s body including geometry (size) and tissues homogeneity (6).

Our study had some limitations, in this study we used \(D_{\text{eff}} \) for calculating the CFs and SSDE in chest region, however, using the \(D_{\text{eff}} \) cause to more accurate estimation of patient dose with considering the tissue density and heterogeneity (21). The \(D_{\text{eff}} \) uses the average CT number of cross section of body and tissue attenuation to make more accuracy in dose estimation. Another limitation was the low number of hospitals included in this study, but as we mentioned in materials and methods the Ilam city just had two hospitals and this study gives a suitable overview about dose management.

CONCLUSION

Although DRLs was lower than other studies but optimization of protocols especially AEC using and choosing various kVp for different body size is necessary. CFs showed that difference between abdomen-pelvis size and 32-cm phantom affect the patient dose estimates. The SSDE must be calculable easily by radiographers of scanner to assessment more accurate patient dose.

ACKNOWLEDGEMENTS

None.

Ethical Consideration: The study is done accordance to the supervision of the ethics committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Conflict of interest: All authors declared that there isn’t any conflict of interest.

Founding: No Found.

Author contribution: All authors contributed to the study conception and design. (M.A.): Data collection, drafting the manuscript; (A.M.), (M.B.) and (K.K.): study design; (M.B.) and (K.K.): Statistical analysis; (M.B.): Final revision of manuscript and supervision All authors read and approved the final manuscript.

REFERENCES

5. Boone J, Strauss K, Cody D (2014) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations: report of AAPM task group 204. American Association of Physicists in Medi-

