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Predicting radiation therapy outcome of pituitary gland in 
head and neck cancer using Artificial Neural Network (ANN) 

and radiobiological models 

INTRODUCTION 

Today, radiation therapy (RT) is a key approach 
utilized extensively to treat solid tumors                          
independently or in conjunction with surgery and 
chemotherapy in advanced stages (1). Unfortunately, 
in addition to destroying cancerous cells, radiation 
therapy damages surrounding normal tissue and 
causes early or late complications that impact the 
patient’s quality of life (2). An initial and important 
step for patients receiving radiotherapy is treatment 
planning. Evaluating treatment plans can ensure the 
proper amount of radiation to tumoral volume is  
delivered while preserving the surrounding vital 
healthy tissue (3). Dose distribution and dose-volume 
histogram (DVH) are two important and standard 
indicators in ranking and selecting an appropriate 
treatment plan for each patient. Recently,                    
radiobiological modeling and estimating the extent of 
normal tissue complication probability (NTCP) as 
well as tumor control probability (TCP) have been 

proposed as the best technique to facilitate the               
treatment process (4, 5), as the main goal of               
radiobiological modeling is to determine the best 
treatment plan for each patient to ensure that the 
highest dose reaches the tumor with the least damage 
occurring to the surrounding normal tissue.               
Therefore, radiobiological modeling to provide a            
reliable estimate of NTCP and TCP in radiation              
therapy is currently under further evaluation (6-8). 
The highest TCP and lowest NTCP in some treatment 
planning systems are the main criteria for accepting a 
treatment plan. Radiobiological modeling has been 
used to estimate the NTCP of different healthy organs 
and tissues (9, 10). For example, Marzi et al. used two 
models, Lyman Kutcher Burman (LKB) and log-
logistic, to predict the complications of the pituitary 
gland. They found no significant differences between 
the two methods, and both predicted the                       
complications of the pituitary gland at a reliable level 
(11). The LKB model is one of the oldest and most         
well-known models for predicting the effects of 
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ABSTRACT 

Background: Pituitary dysfunction is one of the complications associated with head 
and neck radiation therapy. Here, radiobiological and artificial neural network (ANN) 
models were used to estimate the normal tissue complication probability (NTCP) of 
the pituitary gland. Materials and Methods: Fifty-one adult patients with 
nasopharyngeal carcinoma and brain tumor were studied. Two radiobiological models 
of Lyman Kutcher Burman (LKB), log-logistic, and ANN were employed to calculate the 
NTCP of the pituitary gland for all patients. BIOPLAN and MATLAB softwares were used 
for all calculations. The necessary parameters for each radiobiological model were 
calculated using Bayesian methods. R2 (coefficient of determination) and root-mean-
square error (RMSE) parameters were used for the ANN method to get the best 
estimate. The area under the receiver operating characteristic (ROC) curve (AUC) and 
Akaike information criterion (AIC) were used to compare the models. Results: The 
respective mean NTCPs for nasopharyngeal patients with LKB and log-logistic models 
were 54.53% and 50.83%. For brain tumors, these values were 62.23% for LKB and 
53.55% for log-logistic. Furthermore, AIC and AUC values for LKB were 77.1 and 0.826 
and for log-logistic were 71.9 and 0.902, respectively. AUC value for ANN was 0.92. 
Conclusions: It can be deduced that LKB and log-logistic methods make reliable 
estimations for NTCP of the pituitary gland after radiotherapy. Moreover, the ANN 
approach as a novel method for NTCP calculations performed better than the two 
conventional analytical models as its estimations were much closer to the clinical data.  
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healthy tissue. Lee et al. also showed that the LKB 
model can be used to estimate the rate of xerostomia 
in head and neck radiotherapy (12). In a study on       
hypothyroidism, 174 patients with nasopharyngeal 
carcinoma were studied using logistic regression to 
predict thyroid complications. These patients were 
followed for 24 months, and the maximum dose      
received by the pituitary gland was found to be the 
most effective factor in hypothyroidism (13).  

The use of other methods, such as artificial              
intelligence, for predicting NTCP in radiation therapy 
planning have also been studied recently (14, 15). ANN 
is an ideal method for processing information that is 
inspired by the biological nervous system and                 
processes information like the brain. It consists of the 
components of layers and weights. Network behavior 
also depends on communication between members. 
ANN has also been used to estimate the response of 
different organs to radiotherapy (16, 17). In a study  
conducted by Gulliford et al., ANNs were able to             
predict the side effects of prostate radiotherapy (18). 
Ochi et al. used an ANN model to predict survival in 
patients with uterine cervical cancer, and according 
to their results, the neural network was able to              
predict the survival of patients after radiotherapy (19). 
Mahdavi et al. used an ANN to predict dose before 
administration in patients with prostate and              
nasopharynx using the IMRT technique; according to 
their results, ANN has the ability to predict dose            
before treatment (20). 

Hypopituitarism is a complication of head and 
neck radiotherapy (21, 22). Short-term follow-up              
studies have shown that in patients with brain              
tumors treated with radiotherapy, a 25% reduction 
in the secretion of pituitary hormones is observed (23). 
In a long-term follow-up study (8 years), 88.8% of 
patients had pituitary dysfunction growth hormone 
(GH) deficiency as the most common pituitary              
dysfunction, followed by gonadotropin,                                 
adrenocorticotropic hormone (ACTH), and                
thyroid-stimulating hormone (TSH) deficiency, in 
percentages of 86.9%, 34.6%, 23.4%, and 11.2%,  
respectively (24). Pituitary gland hormone disorders 
were studied in a meta-analysis by Appelman-
Dijkstra et al., who reported GH deficiency (45%), 
gonadotropin deficiency (30%), TSH deficiency 
(25%), and ACTH deficiency (22%), respectively.    
According to these studies, the dysfunction of the 
pituitary gland affects the quality of life of patients 
for a long time (25).  

The aim of this study was to evaluate and rank the 
predictive power of three methods in estimating              
pituitary gland complications after radiation therapy 
for first time. For this purpose, radiobiological               
models of LKB and log-logistic and ANN-based model 
were used to calculate NTCP. The performance of the 
models was assessed and then compared to find and 
recommend the best model. 
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METHODS AND MATERIALS 
 

Patient selection and follow up 
The inclusion criterion for this study was normal 

pituitary gland function, so an initial blood test was 
performed to determine the growth hormone levels 
in the study group. Fifty-one patients with head and 
neck cancers treated by radiotherapy were selected 
from among the patients in whom part or all of the 
pituitary gland was located in the main field                      
of treatment. This study was conducted after the              
review and approval of the ethics committee 
(approving body: Tabriz University of Medical           
Sciences, Tabriz, Iran; registration number: 
IR.TBZMED.VCR.REC.1397.126. and date of                     
registration: 15th of March 2018). 

Twenty–five patients (fifteen males and ten               
females) were selected from nasopharyngeal patients 
and twenty-six patients from brain tumor patients 
(sixteen males and ten females). The average age of 
the men and women was 50 and 42.5 years,                
respectively. Demographic, clinical, and treatment 
characteristics of patients and therapeutic                     
information of the pituitary glands were presented in 
table 1. It should be noted here that several               
hormones are impacted by radiation therapy of the 
pituitary glands, including ACTH, TSH, and GH.               
However, based on previous studies, GH was              
considered in the current study as an indicator of 
early complications of the pituitary gland after           
radiotherapy (26, 27). Before starting the treatment, the 
patients were subjected to hormonal tests to check 
the normal activity of the pituitary gland. The 
patients were followed for twelve months after the 
end of treatment, and GH hormone tests were               
performed on them every three months. NTCP for the 
participants was calculated with two radiobiological 
models, LKB and log-logistic, and an ANN-based  
model.  

Characteristic Number of patients 
Sex 

Male 
Female 

  
31 
20 

Mean age (y) 
Male 

Female 

  
50±25 

42.5±14.5 
Cancer site 

Nasopharynx 
Brain tumor 

  
25 
26 

Mean dose of pituitary gland 
(Brain tumor) (Gy) 

Minimum 
Maximum 

Mean 

  
 

47.77 
54.21 

51.22±7.9 
Mean dose of pituitary gland

(nasopharynx) (Gy) 
Minimum 
Maximum 

Mean 

 
  

27.34 
43.03 

36.09±12 
Volume of pituitary gland (mL), mean±SD 0.76±0.3 

Table 1. Demographic, clinic and therapeutic information of 
the patients. 
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Radiobiological modeling 
LKB (Lyman-Kutcher-Burman) model 

The LKB model was first proposed by                       
Lyman-Kutcher-Burman, and NTCP was calculated by 
equation (1) (28). 
 

NTCP = 
 
t =      (1)  
 
 
 
 

where Deff was the dose that was an equivalent 
uniform dose (EUD), TD50 was the dose whose                
complication risk was 50%, m was the slope of the 
sigmoid curve, and n was the volume effect                      
parameter. The vi was the fraction of the volume of 
the limb that received the dose Di. 

 
Log-logistic model 

The EUD model was first proposed by Niemierko 
for non-uniform dose distribution in tumors (29). To 
use the concept of EUD in normal tissue, Niemierko 
proposed equation (2) called gEUD (30). 

 

gEUD = ∑i(ViDia)1/a    (2) 
 

Here a  was the volume effect parameter. To           
calculate the NTCP for the log-logistic model,               
equation (3) was used. 

 

      (3) 
 
The γ50 was the slope of the dose-response curve 

in TD50. There were different types of software for 
calculating NTCP. 

In this study, BIOPLAN software was used for LKB 
model and MATLAB software was used for                 
log-logistic model (31). The parameters used in these 
models were calculated by Bayesian method and the 
fitting of the models was performed using Stan               
software package and in R 3.3.2 software (32). 

 

ANN (Artificial neural network) based model 
The techniques of current study had focused on 

multilayer perceptron (MLP) (33). Many of the same 
units were called nodes, which were similar to the 
processing units in brain neurons. These nodes were 
made up of a number of layers (input, hidden, and 
output layers) (figure 1) that were connected by 
weights, representing the interstitial synapses in the 
brain (34). In the present study, six nodes in the input 
layers included the minimum, maximum, mean, total 
prescribed dose, and pituitary gland volume. 80% of 
the input nodes was given to the network for training 
and 20% was intended for the test part. MATLAB 
software was used for this purpose. The hidden layer 
nodes were changed and finally, the output layer was 
NTCP, calculated by the network. For ANN model, the 

statistical indices of RMSE and the R2 were used to 
evaluate the proposed models. RMSE showed the             
difference between the value predicted by the model 
and the actual value. R2 indicated the probability of 
correlation between the data predicted by the model 
and the actual data. 

Performance evaluation of models 

Finally, the area under the ROC curve (AUC) and 
Akaike Information Criterion (AIC) were used to  
evaluating the performance of the investigated                
models in this study. AIC was used to rank the                
radiobiological models. The AIC evaluation criterion 
indicated the amount of information lost by the              
model, and therefore the smaller the AIC evaluation 
criterion, the better and more appropriate the model 
was compared to the other models.  

 
 

RESULTS 
 

The mean doses received by the pituitary glands 
in patients with brain tumors and nasopharyngeal 
cancers were 51.22 and 36.09 (Gy), respectively.            
Average pituitary gland volume in patients was 0.76 
(mL). 

Table 2 showed the parameters of the models 
with 95 ٪CI. As shown in this table 2, the TD50 values 
for the LKB model and the log-logistic model were 
31.33 and 25.56 (Gy), respectively. Based on these 
parameters, NTCP was calculated for each of the 
models. The mean NTCP calculated for brain tumor 
patients with LKB and log-logistic models                           
was 62.23% and 53.55%, respectively. For                                 
nasopharyngeal patients, the mean NTCP calculated 
with LKB and log-logistic models is 54.53% and 
50.83%, respectively, which is shown in table 3 and 
figure 2 showed the dose-response curve for the         
pituitary gland using the LKB model in the two                
patient groups. According to the figure 2, the                 
probability of complications increases with increases 
to mean dose. Figure 3 displayed the dose-response 
curve for the pituitary gland in the two patient 
groups using the log-logistic model. The ROC curve 
shown in figure 4a illustrations that the log-logistic 
model was more consistent with clinical data,         

Shahbazi et al. / Radiotherapy prediction by ANN Models 55 

Figure 1. Multilayer artificial neural network (ANN) model in 
current study. 
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because AUC was larger with it than with the LKB 
model. The AIC criterion for ranking models was also 
used. As shown in table 4, the AIC of the log-logistic 
model was 71.9 and for the LKB model was 77.1, 
which again indicates that the log-logistic model was 
more consistent with the clinical data. 

Also, as shown in table 5, for the neural network 
to reach the best data estimates, the nodes needed to 
be changed. As can be seen, by changing the nodes 
and calculating the RMSE and R2 for the network 
training and test parts, the best case was observed in 
node 3. The lower the RMSE was and the closer R2 is 
to one, the better estimate will be, and the closer the 
neural network predictions will be to the clinical  
data. Figure 4b and table 5 showed the ROC curve 
and the AUC, respectively, for each of the nodes.                     
According to the results, the best area under the 
curve was for node 3. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

DISCUSSION 
 

According to table 1, the average dose received by 
the pituitary gland of brain tumor patients was higher 
than that received by nasopharyngeal patients.  
Therefore, it was expected that the probability of 
complications would be higher in patients with brain 
tumors than in patients with nasopharyngeal cancer. 
The mean NTCP (%) was predicted more accurately 
by both models in brain tumor patients than in         
patients with nasopharyngeal cancer. According to 
these results, the LKB model predicts the probability 
of complications more accurately than the log-logistic 
model. Also, it can be seen that predictions by the    
log-logistic model were closer to the clinical data 
(table 4). In the study of Marzi et al., which is similar 
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Models Parameter Value 95% CI 

  
LKB 

n 
TD50 (Gy) 

m 

0.0254 
31.33 
2.24 

0.0064-0.0676 
23.83-39.17 

1.22-3.47 

  
log-logistic 

a 
TD50 (Gy) 

γ50 

2.5 
25.56 

0.0523 

0.013-1.6 
15.96-35.61 
0.0018-0.2 

Table 2. The parameters for two models of Lyman Kutcher 
Burman (LKB), and log-logistic including a, TD50, m, n and  50 

with 95% confidence interval (CI). 

NTCP (%) 
(Brain tumor)% 

NTCP (%) 
(Nasopharynx) 

Models 

4.51±62.23 6.88±54.535 LKB 
1.22±53.55 3.84±50.83 log-logistic 

Table 3. Average normal tissue complication probability 
(NTCP, %) using the two radiological models (Lyman Kutcher 

Burman (LKB), and log-logistic).  

Figure 2. Dose-response curve for pituitary gland disorder 
using LKB model: a) for nasopharynx patient, b) for brain          

tumor patient. 

Model AIC AUC 
LKB 77.1 0.826 

log-logistic 71.9 0.902 

Table 4. Model ranking based on widely Akaike’s information 
criterion (WAIC). LKB: Lyman Kutcher Burman. AIC: Akaike 

Information Criterion. AUC: Area under the ROC Curve. 

AUC Nodes 
0.909 2 
0.92 3 

0.908 4 
0.748 5 

Table 5. AUC for each of the hidden layers nodes. AUC: Area 
under the ROC Curve. 

Figure 3. Dose-response curve for pituitary gland disorder 
using log-logistic model: a) brain tumor patients, b)                       

nasopharynx patients. 

Figure 4. ROC 
(Receiver              
Operating          

Characteristic) 
curves for: a) 

Lyman Kutcher 
Burman (LKB) 

and log-logistic 
models, b)          

artificial neural 
network (ANN) 
for each of the 

hidden layer 
node. 
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to the current study, the LKB and log-logistic models 
had very close results with only a slight difference in 
AIC. The AIC of their LKB model was 92.3 and of the 
log-logistic model was 92.4 (11). Similar to current 
study, the AIC values herein were 77.1 for the LKB 
model and 71.9 for the log-logistic model (table 4). In 
another comparison with the ROC curve, the AUC was 
larger in the log-logistic model than in the LKB             
model, indicating that the log-logistic model               
predicted more closely to the clinical data. The            
results of Marzi et al. (11), however, indicated that the 
AUC was larger with the LKB model than with the log
-logistic model. 

Many studies have used ANNs to predict the               
effects of various organs on the body after                     
radiotherapy. For the first time, the current study 
used a neural network to predict the complications of 
the pituitary gland after head and neck radiotherapy. 
As shown in table 5, the neural network was           
performed with different hidden layers nodes to 
achieve the best prediction. One hidden layer with 3 
nodes was the best estimate. Thomas et al. used ANN 
and logistic regression (LR) to predict the survival of 
radiotherapy-treated head and neck patients.              
According to their results, ANN predicted more             
accurately than LR (35). 

In head and neck cancers treated with                       
radiotherapy, when part or all of the pituitary gland 
is exposed to radiation, the probability of pituitary 
gland disorders developing is 8% to 50%, the                  
primary one of which is growth hormone deficiency 
(36). Many studies have recommended a prescribed 
dose for the pituitary gland. For example, Silvia et al. 
recommended a dose of less than 50 Gy for adults 
and less than 25 or 30 Gy for children (37). Pai et al. 
reported a dose of 50-70 Gy for the pituitary gland 
(38). In the study by Emami et al., maximum doses 
greater than 45 Gy caused panhypopituitarism (39). As 
can be seen in figures 2 and 3, in most brain tumor 
patients, the pituitary gland received a dose between 
40-60 Gy, which resulted in higher NTCP for                  
these patients. For patients with nasopharyngeal                   
carcinoma (figures 2 and 3), however, the mean dose 
of 36.09 Gy was lower than the suggested dose               
constraint and caused lower NTCPs for the pituitary 
gland. 

Oinam et al. compared two radiobiological            
models, LKB and Niemierko. According to their             
findings, the LKB model estimated the same effects 
when using healthy tissue standards to calculate the 
NTCP, but the Niemierko model could not reproduce 
the same effects. When these two models were               
examined for clinical data, however, the LKB model 
had a different response than the Niemierko model. 
Compared to the current study, the Niemierko model 
was closer to the clinical data. 

In another study performed on the prostate, the 
effects of healthy tissue on the rectum were               
calculated using the LKB model and compared with 
the multivariate logistic model. The findings and the 

AUC comparison for both models indicated that the 
logistic model could estimates more closely to clinical 
data. AUC for LKB and logistic models in said study 
was 0.6 and 0.75, respectively; in the current study, 
they were 0.826 and 0.902, respectively (40). 

Tomatis et al. used an ANN to predict rectal com-
plications in prostate patients, and the results were 
compared by the logistic regression method. In their 
study, 718 patients with a prescribed dose of 70-80 
Gy were followed for at least 36 months. According to 
their results, AUC for the independent test set was 
0.704 for ANN and 0.655 for LR; for cross-validation 
evaluation, it was 0.714 and 0.636 for ANN and LR, 
respectively. These results indicate that the ANN can 
predict rectal complications more accurately than LR 
(41). 

Pudasaini et al. also used ANN to predict               
radiobiological markers in lung cancer. NTCP and 
TCP as ANN output, and planning target volume 
(PTV), treatment method, tumor site, prescribed 
dose, fraction number, maximum dose for tumor, and 
mean dose for organs at risk were selected as the 
ANN input. Moreover, 70% and 30% of the data were 
used for training and testing, respectively. The              
overall regression for predicting NTCP and TCP in 
ANN was 0.94. RMSE was 0.007 for training and 
0.024 for testing. The results indicated that ANN can 
be planned to anticipate radiobiological parameters 
at a 5% error rate, which is showed by the regression 
value (42). DD Cho et al. also used an ANN to predict 
complications in patients with head and neck cancer 
after external radiotherapy. In their study, 73                
patients with advanced head and neck diseases were 
studied. Eleven input nodes and 22 hidden nodes 
were given to the neural network according to the 
available data. Fifty-one, 11, and 11 patients were 
used for training, validation, and testing, respectively. 
According to the results obtained in this study, ANN 
is an effective method for predicting complications 
after radiation therapy such as distant metastasis and 
other complications (43). These results fit in perfectly 
with the current study. 

Similarly, Bryce et al. investigated patient survival 
in head and neck squamous cell carcinoma (SCCHN) 
using ANN and LR models. According to their results, 
ANN more accurately predicted survival than LR (44). 
In another study, ANN and SVM (support vector            
machines) were used to predict bladder and rectal 
complications in 321 patients with prostate cancer; 
the AUC was 0.7. According to the results, ANN 
showed greater sensitivity to SVM (45). 

By calculating NTCP using two radiobiological 
models (LKB and log-logistic) and ANN and                     
comparing the results with AUC, it was found that the 
ANN predictions were more accurate than those of 
two other radiobiological models and closer to the 
follow-up data. 

To sum up, because NTCP is dependent on the 
dose received by the pituitary gland, in the current 
study, patients with brain tumors were more likely to 
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have complications than patients in the                    
nasopharyngeal carcinoma group. Considering the 
AIC test results, the log-logistic model estimated 
more closely to the follow-up data in both groups of 
patients. Predictive results with the ANN method 
developed in this study used error measurement  
criteria; however, based on the AUC results, the ANN 
produced closer predictions to the follow-up data 
compared to the LKB and log-logistic models. In        
association with other radiobiological models and 
higher patient populations, application of the ANN 
method is recommended. 
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