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Evaluation of PD-L1 expression status in nasopharyngeal 
carcinoma by 18F-FDG PET/CT radiomics analysis  

INTRODUCTION 

NPC is an aggressive carcinoma that arises from 
the nasopharynx’s columnar epithelium mucosa. The 
illness has a noticeable geographic dispersion and is 
linked to both environmental and genetic factors. It is 
most common in northern Africa, southern China, and 
southeast Asia. Even while NPC incidence has                 
decreased recently worldwide, in endemic areas it 
remains one of the primary reasons of malignancy 
and cancer-related mortality (1-3). Among these high-
prevalence areas, the most common histopathological 
subtype of nasopharyngeal carcinoma is                          
nonkeratinizing squamous cell carcinoma, relating 
with the Epstein-Barr Virus (EBV) (1, 4). Historically, 
locally and early advanced NPC were primarily              
treated with radiotherapy alone or in combination 
with chemotherapy. Patients are prone to distant                  
metastasis or local recurrence and exhibit a poor  
response to conventional treatment and poor                 
prognosis due to chemotherapy resistance (1, 5-8). 
However, with the rapid development and           
breakthrough of  immune checkpoint blockade               

therapy for solid neoplasm, immunotherapy targeting 
PD-L1/PD-1 (Programmed Death-1) has become a 
recent research hotspot. Several clinical trials and 
research have shown that PD-L1/PD-1 inhibitor             
single therapy as also as combination with                  
chemotherapy or radiotherapy have improved               
efficacy and prognosis in the antitumour treatment of 
NPC (9-15). In 2021, China approved PD-L1/PD-1               
inhibitors in the metastatic, recurring, or resistant 
nasopharyngeal cancer as a first-line                                
recommendation. These inhibitors, combined with 
cisplatin and gemcitabine, are now recognized as one 
of the new standard first-line recommendations, 
providing advanced NPC patients with new hope for 
successful treatment (16). 

Before undergoing immunotherapy, PD-L1                  
expression is evaluated via immunohistochemistry 
(IHC) on tumor tissue samples, which can be invasive 
and affected by tumor heterogeneity (17). Therefore, 
developing a noninvasive and accurate method for 
assessing PD-L1 expression status is particularly  
important for predicting and screening tumor                
patients who may gain from immunotherapy. As a 
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ABSTRACT 

Background: We aimed to accurately and efficiently evaluate Programmed Death 
Ligand-1 (PD-L1) expression by relevant radiomic studies of fluoro-18-
fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography 
(PET/CT) images in nasopharyngeal carcinoma (NPC) patients. Materials and Methods: 
This retrospective study included 60 untreated NPC patients had PET/CT. Cohorts of 
training and validation were randomly selected among the patients. The CT and PET 
radiomic features from the training cohort were obtained and screened, to construct 
CT, PET and combined models. Finally, verification and comparative analysis were 
performed. Results: According to the analysis, the maximum Standardized Uptake 
Value (SUVmax) alone was the standalone predictive indicator of PD-L1 presence level, 
thus incorporated into the combined model. Among our training cohort, the CT, PET, 
and combined models’ Area under Curve (AUC) values respectively were 0.837, 0.852, 
and 0.948, demonstrating excellent discrimination and calibration. However, the 
combined model had higher AUC values in the cohorts of training and validation, 
reaching AUCs of 0.948 and 0.802, respectively. Clinical decision curve analysis (DCA) 
further illustrated Combined model surpassed both the CT and PET models, attaining a 
benefit threshold probability of more than 5% and a net benefit (NB) of 0.450 at the 
optimal threshold probability. Conclusion: The combined predictive model based on 
relevant radiomic studies of PET/CT scans performed better than other models in 
assessing individualized PD-L1 expression in NPC. 
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rapidly developing emerging field, radiomics has 
achieved remarkable results in genophenotype        
prediction, prognosis monitoring, treatment plan  
decision-making, tumor staging and grading, disease 
diagnosis and differential diagnosis, and efficacy  
evaluation (18-21). Several studies have utilized                 
radiomic features, including MRI (Magnetic                     
Resonance Imaging), CT, and PET/CT to develop          
prediction models for PD-L1 expression with several 
cancer forms, like non-small cell lung carcinoma 
(NSCLC) (22-27), breast carcinoma (28), early-stage lung 
adenocarcinoma (29), hepatocellular carcinoma (30), 
gastric adenocarcinoma (31, 32), and renal clear cell 
carcinoma (33). However, to our knowledge, no studies 
have developed radiomic-related predictive models 
for PD-L1 expression in NPC. 

Therefore, our goal in this research was to             
construct an effective personal prediction model for 
nasopharyngeal cancer patients' PD-L1 expression by 
analyzing the radiomic characteristics of PET/CT,  
and the important relevant metabolic and                            
clinicopathological characteristics to screen patients 
who may profit from immunotherapy. This study's 
novelty lies in being the first attempt to                      
noninvasively forecast the PD-L1 expression in NPC 
through combining radiomics and PET/CT. 

 
 

MATERIALS AND METHODS 
 

Patients 
We retrospectively analyzed 60 individuals had 

18F-FDG PET/CT scans at the First Affiliated Hospital 
of Guangzhou University of Chinese Medicine from 
June 2021 to April 2023 and were pathologically        
confirmed to have NPC. The following were the             
inclusion criteria: (1) pathologically confirmed            
nasopharyngeal carcinoma and PD-L1 IHC                  
examination; (2) Examination with PET/CT within 2 
weeks before the biopsy and treatment; and (3) full 
clinical and other pathological information, such as 
gender, age, smoking history, plasma EBV-DNA             
quantification before treatment, Ki-67 expression, 
EBER and tumor stage. The following were the             
exclusion criteria: (1) received any antitumour            
therapy, such as radiotherapy or chemotherapy, prior 
to 18F-FDG PET/CT and/or pathological examination; 
(2) possessed a prior medical history of cancerous 
tumors; and (3) had incomplete clinical and                    
pathological data. The eighth eversion of staging              
system developed by AJCC (American Joint                 
Committee on Cancer) was used, and PET/CT scans 
and related clinicopathological information were  
collected from all patients. Computer-generated              
random numbers were employed to separate                   
individuals into the cohorts for validation and              
training at a 1:2 ratio. 

 

Detection of PD-L1 expression 
Surgical specimens or biopsy were embedded in 
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paraffin, formalin-fixed, and then cut at a thickness of 
4 μm in serial sections. PD-L1 expression was                
measured using an automated immunohistochemis-
try stain (Roche BenchMark XT, USA) and a detection 
kit (SP263 pharmDx, USA) and was evaluated            
separately by two pathologists who did not have            
access to the clinical information. The calculation 
method utilized was the TPS, in which the overall 
quantity of viable tumorous cells was divided by the 
count of PD-L1-positive tumorous cells and then            
expanded by 100 fold. A result of ≥50% was defined 
as high expression. 

 

PET/CT imaging 
Before PET/CT, patients had to keep their fasting 

blood sugar levels under 11 mmol/L and to fast for at 
least 6 hours. Following a venous infusion of 3.70–
5.55 MBq/kg 18F-FDG (18F-FDG I.V. Injectable                   
Solution, Atom Hi-Tech, CN) and quiet rest for 1 hour, 
data acquisition was executed using a PET/CT system 
(GE Discovery MI, USA). A CT scan was conducted 
using the following parameters: 120 kV of voltage, 
120 mA of current, 70 cm of warp field of view (FOV), 
0.984:1 pitch, 0.8 s of rotation time, 3.75 mm of slice 
thickness, 512 x 512 matrix. This was followed by a 
PET scan, which took 7-8 beds per patient and 2-3 
minutes per bed. 

 

Image segmentation and radiomic feature                 
extraction 

LIFEx software (LIFEx 7.3.0 software, FR) was 
utilized for importing those DICOM-formatted PET 
and CT images (34). Two highly skilled nuclear              
medical experts manually mapped the primary tumor 
to obtain a three-dimensional VOI (Volume of          
Interest) layer by layer and determined TLG  (Total 
Lesion Glycolysis) and MTV (Metabolic Tumor               
Volume) at a threshold of forty-one percent of               
SUVmax. MRI and Contrast-enhanced CT are                 
sometimes used to help determine the VOI. The              
spatially resampled voxel size was 1×1×1 mm3. The 
CT image was discretized to 400 in the absolute range 
of -1000 to 1000, while the PET image was                     
discretized to 64 in the absolute range of 0 to 30.  
Subsequently, radiomic feature extraction was                
carried out. Utilizing the intraclass correlation              
coefficient (ICC), the features' repeatability and           
dependability were assessed, and patients with an 
ICC>0.75 were retained. The extracted feature values 
were normalized using the "StandardScaler" function 
in the open-source software Python (Python 3.8           
software, NL) "sklearn Preprocessing" module. 

 

Radiomics feature selection and machine learning 
model construction 

Those useful PET and CT features were selected 
separately from our training group using LASSO 
(Least Absolute Shrinkage and Selection Operator). 
The univariate analysis served to compare                     
clinicopathological indicators (including gender, age, 
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smoking history, pretreatment plasma EBV-DNA  
concentration, Ki-67 expression, the EBER, and        
tumour stage) and related metabolic parameters 
(including the MTV, TLG, and SUVmax) between the 
groups with low and high PD-L1 presence among our 
training cohort, and the multivariate logistic analysis 
subsequently served to determine the standalone 
predictive indicator substantially linked with PD-L1 
expression. The support vector machine (SVM) in the 
Python 3.8 "sklearn" module was used to construct 
CT, PET and combined machine learning models. The 
SVM model was established using an internal matrix 
laboratory (MATLAB) script, the linear kernel               
function was selected, the penalty coefficient C was 
assigned to 1, and the parameters were adjusted by 
two 3-fold cross-validations. Figure 1 shows the  
model-building process used in our study. 

Performance evaluation of machine learning             
models 

Across the training and validation samples, the 
ROC (Receiver Operating Characteristic) curve and 
AUC were employed for evaluating models, and              
sensitivity and specificity were calculated.                  
Hosmer-Lemeshow test was applied to evaluate the 
fitness of the model. AUC values comparing different 
models was subjected to the DeLong test. By               
computing NB of a number of threshold probabilities 
throughout the cohort, DCA was employed for               
evaluating a model's therapeutic value. 

 

Statistical analysis 
SPSS statistical analysis software (SPSS 23.0             

software, USA) was dedicated to univariate analysis 
(including independent sample t test, chi-square test, 
or Mann‒Whitney U test) and multivariate logistic 
analysis. A P-value of less than 0.05 in a bilateral test 
was the criterion for statistical significance.                  
Open-source Python 3.8 software was employed to 
statistically analyze radiomic features. The 
"pingouin" module was used for ICC calculations, the 
"LassoCV" in the "sklearn.linear_model" module was 
used for LASSO regression analysis, and the 
"roc_curve" and "roc_auc_score" functions in the 
"sklearn.metrics" module were used for ROC curve 
plotting and AUC calculation, respectively. In                    
addition, we used R statistical software (R 4.0.2                
software, NZ) for the Hosmer–Lemeshow test, Delong 
test, and DCA curve plotting. 

 
 

RESULTS 
 

Clinicopathological features and related metabolic 
parameters 

Among 60 NPC individuals, the average age was 
51.65 years, ±11.59 years, with a male dominance of 
2:1. 42 patients (70.0%) were in TNM stage III-IV, 
and 36 (60.0%) exhibited high levels of PD-L1. All the 
nasopharyngeal carcinoma lesions displayed                  
metabolic enhancement on 18F-FDG PET/CT, with a 
SUVmax of 11.13±6.25. Figure 2 displays a PET/CT 
image from one such patient. In table 1, all patients’ 
clinicopathologic and associated metabolic indicators 
are summarized, and univariate examination failed to 
uncover any substantial disparities (P>0.05) in these 
aforementioned indicators between the training and 
validation sets, signifying a balanced distribution of 
baseline factors for both cohorts. 

In the training cohort, PD-L1 level was high in 
60.0% (24 patients) and low in 40.0% (16 patients). 
The SUVmax values for PD-L1 high-level group and 
low-level group were 13.17±6.27 and 7.06±4.58,             
respectively. Within the training cohort, univariate 
analysis showed the PD-L1 level did not correlate 
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Figure 2. A 58-year-old male patient with nasopharyngeal 
carcinoma. The red arrow indicates a nasopharyngeal                 

carcinoma lesion. PET showed obvious hypermetabolic foci in 
the nasopharynx, and SUVmax was 20.4, and CT showed              

obvious thickening, swelling and density reduction of the soft 
tissues of the nasopharynx. 

Figure 1. Study flowchart of 18F-FDG PET/CT radiomics               
analysis for predicting PD-L1 in nasopharyngeal carcinoma. 
(18F-FDG PET/CT, fluoro-18-fluorodeoxyglucose positron 

emission tomography/computed tomography; PD-L1,                 
programmed death ligand-1; NPC, nasopharyngeal carcinoma; 

SUVmax, maximum standardized uptake value; MTV,                
metabolic tumor volume; TLG, total lesion glycolysis; Lasso, 

least absolute shrinkage and selection operator; SVM, support 
vector machine;).  
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with gender, age, smoking history, EBVDNA                     
quantification, or EBER (P>0.05; table 2); however, it 
was significantly associated with Ki-67 expression, 
TNM stage, SUVmax, MTV, or TLG (P<0.05; table 2). 
Further multivariate logistic analysis ultimately 
demonstrated the SUVmax alone was the                         
independent predictor of PD-L1 expression status 
(OR (Odds Ratio)=1.295, 95% CI (Confidence                  
Interval)=1.074-1.562, P=0.007). Therefore, only the 
SUVmax was used for the subsequent construction of 
combination prediction model. 

Radiomics feature selection and predictive model 
construction 

Through LASSO regression analysis (figure 3), 
three meaningful CT radiomic features and five PET 
radiomic features were taken out of the training             
cohort: CT _ Morphological _ Compactness 2,  CT _ 
Morphological _ Centre Of Mass Shift, CT _ Intensity _ 
Histogram _ Maximum Histogram Gradient Grey             
Level, PET _ Morphological _ Compactness 2, PET _ 
Local _ Intensity _ Based _ Local Intensity Peak, PET _ 
Intensity-Histogram _ Intensity Histogram Skewness, 
PET _ Intensity _ Histogram _ Root Mean Square and 
PET _ GLCM _ Normalized Inverse Difference Moment 

(table 3).  
Based on the screening results, CT and PET               

prediction models were constructed. In addition, the 
Rad score was calculated according to the Rad scoring 
formula (Radscore = ∑8i=1(Ϝi×αi), Ϝ: Radiomic                   
features, α: Coefficient). Rad scores of high and low 
PD-L1 level groups within the training cohort                 

respectively were 0.14±0.15 and -0.15±0.20. The 

distinction held statistical significance (t=-5.220, 
P=0.000; table 2). Therefore, we incorporated the 
SUVmax and Rad score to construct the combined 
predictive model with CT and PET radiomics. 

 

Evaluation and validation of the PD-L1 expression 
prediction models 

As figure 4, the CT, PET, and combined models' 
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Table 1. The clinicopathological features and related                   
metabolic parameters of the training cohort and validation 
cohort. (EBV, Epstein-Barr virus; EBER, EBV-associated RNA; 

PD-L1, programmed death ligand-1; SUVmax, maximum  
standardized uptake value; MTV, metabolic tumor volume; 

TLG, total lesion glycolysis). 

Variables 
Total 

(n=60) 
Training 
(n=40) 

Validation 
(n = 20) 

Statistics P 

Age 
(years) 

51.65± 
11.59 

51.95± 
11.73 

51.05± 
11.58 

t=0.281 0.779 

Sex       c2=0.038 1.000 
Male 40(66.7%) 27(67.5%) 13(65.0%)     

Female 20(33.3%) 13(32.5%) 7(35.0%)     
Smoking 
history 

      c2=1.227 0.326 

Smoker 13(21.7%) 7(17.5%) 6(30.0%)     
Never 47(78.3%) 33(82.5%) 14(70.0%)     

EBV-DNA       c2=0.536 0.595 
Normal 56(93.3%) 38(95.0%) 18(90.0%)     

High 4(6.7%) 2(5.0%) 2(10.0%)     

Ki-67 
53.58± 
20.26 

49.88± 
21.14 

61.00± 
16.83 

t=-2.049 0.055 

EBER       c2=1.579 0.544 
Negative 3(5.0%) 3(7.5%) 0(0.0%)     
Positive 57(95.0%) 37(92.5%) 20(100.0%)     
PD-L1       c2=0.000 1.000 
<50% 24(40.0%) 16(40.0%) 8(40.0%)     
≥50% 36(60.0%) 24(60.0%) 12(60.0%)     
TNM 
stage 

      c2=0.000 1.000 

I-II 18(30.0%) 12(30.0%) 6(30.0%)     
III-IV 42(70.0%) 28(70.0%) 14(70.0%)     

SUVmax 
11.13± 

6.25 
10.72± 

6.36 
11.96± 

6.08 
t=-0.718 0.476 

MTV 
24.91± 
30.82 

24.49± 
34.58 

25.73± 
22.22 

t=-0.146 0.885 

TLG 
120.69± 
168.44 

121.40± 
192.47 

119.27± 
109.81 

t=-0.46 0.964 

Table 2. Univariate analysis of PD-L1 expression groupings in 
training cohort. (EBV, Epstein-Barr virus; EBER, EBV-associated 
RNA; PD-L1, programmed death ligand-1; SUVmax, maximum 

standardized uptake value; MTV, metabolic tumor volume; 
TLG, total lesion glycolysis; Rad). 

Variables 
PD-L1<50% 

(n=16) 
PD-L1≥50% 

(n=24) 
Statistics P 

Age(years) 50.63±9.92 52.83±12.93 t=-0.578 0.567 
Sex     c2=0.019 1.000 

Male 11(68.8%) 16(66.7%)     
Female 5(31.3%) 8(33.3%)     

Smoking history     c2=1.039 0.407 
Smoker 12(75.0%) 21(87.5%)     
Never 4(25.0%) 3(12.5%)     

EBV-DNA     c2=1.404 0.508 
Normal 16(100.0%) 22(91.7%)     

High 0(0.0%) 2(8.3%)     
Ki-67 40.63±18.06 56.04±21.11 t=-2.39 0.022 
EBER     c2=0.961 0.553 

Negative 2(12.5%) 1(4.2%)     
Positive 14(87.5%) 23(95.8%)     

TNM stage     c2=8.750 0.005 
I-II 9(56.3%) 3(12.5%)     

III-IV 7(43.8%) 21(87.5%)     
SUVmax 7.06±4.58 13.17±6.27 t=-3.342 0.002 

MTV 10.67±10.84 33.71±41.58 t=-2.585 0.015 
TLG 43.77±59.62 173.15±231.32 t=-2.613 0.014 
Rad -0.15±0.20 0.14±0.15 t=-5.220 0.000 

Table 3. Coefficients of radiological characteristics identified 
through LASSO (least absolute shrinkage and selection              
operator) regression. (CT, computed tomography; PET,              

positron emission tomography; GLCM, gray-level                               
co-occurrence matrixgray). 

Number Radiomic Features (Ϝ) Coefficient(α) 
1 CT_Morphological_Compactness2 0.048008 
2 CT_Morphological_CentreOfMassShift 0.089310 

3 
CT_Intensity - Histogram _ Maximum 

HistogramGradientGreyLevel 
-0.048243 

4 PET_Morphological_Compactness2 -0.018537 

5 
PET_Local_Intensity_Based_LocalInte

nsityPeak 
0.030335 

6 
PET_Intensity-Histogram 

_IntensityHistogramSkewness 
0.014700 

7 
PET_Intensity-

Histogram_RootMeanSquare 
-0.040576 

8 
PET_GLCM_NormalisedInverseDiffere

nceMoment 
0.069403 
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ROC curves employed to forecast PD-L1 presence 
level were mapped out. Within the training group, the 
CT, PET, and combined models’ AUCs respectively 
were 0.837 (95% CI: 0.711-0.963), 0.852 (0.718-
0.985), and 0.948 (0.887-1.000); the optimal                   
thresholds were 0.64, 0.66, and 0.75, separately; the 
sensitivity and specificity at the optimal threshold 
were 75.0% and 81.3%, 83.3% and 81.3%, and 
75.0% and 100%, separately. Within the validation 
group, the above three predictive models’ AUCs              
respectively were 0.781 (95% CI: 0.576-0.987), 0.583 
(0.317-0.850), and 0.802 (0.601-1.000); the optimal 
thresholds were 0.64, 0.62 and 0.66, separately; the 
sensitivity and specificity at the optimal threshold for 
each model separately were 58.3% and 100.0%, 
66.7% and 62.5%, and 87.5% and 75.0%. The                
findings showed that the three predictive models 
performed well in terms of diagnosis, particularly the 
combined model, which had better predictive ability 
(AUCs of 0.948 and 0.802, respectively) within the 
training and validation sets; moreover, the sensitivity 
and specificity were also comparable. 

Hosmer–Lemeshow tests were performed on the 
above three predictive models, and the calibration 
demonstrated acceptable performance (P>0.05; table 
4). Furthermore, the Delong test was conducted, and 
as indicated in Table 4, there was no noteworthy  
difference among the three models’ AUCs within the 
training cohort (P>0.05); however, the AUCs of the 
PET and combined models differed significantly  
within the validation cohort (Z=-2.587, P=0.010). 

Figure 5 reveals the DCA results for models across 
the two cohorts. In the training cohort, the CT, PET, 
and    combined models’ probability thresholds were 
>34%, >12%, and >5%, respectively; the optimal 
threshold probabilities respectively were 0.64, 0.66, 
and 0.75; the NB values separately were 0.317, 0.354, 
and 0.450. In the validation cohort, the above three                
predictive models’ probability thresholds separately 
were >38%, >48%, and >39%; the optimal threshold 
probabilities were 0.64, 0.62, and 0.66, separately; 
the NB values were 0.250, 0.155, and 0.256,                     
separately. The DCA indicated that, for the majority 
of the appropriate threshold probability ranges, the 
combined model outperformed the two individual 
models. For every 100 patients, 13.3 more PD-L1 
high-expression nasopharyngeal carcinoma patients 
were correctly detected using the combined model 
than via the CT model ((0.450-0.317)×100%=13.3), 
and 9.6 more than via the PET model ((0.450-0.354)
×100%=9.6). 

 

 

Yang et al. / PD-L1 expression in NPC by PET/CT radiomics  451 

Figure 3. LASSO (least absolute shrinkage and selection              
operator) regression process. LASSO regression was used for 

radiomics feature selection, and the best lambda (λ) value was 
selected by tenfold cross-validation. In the figure, the ordinate 

"MSE" represents the mean square error, the ordinate 
"coefficient" refers to the radiomics feature coefficient, and 

the error bars is the standard deviation. (A) and (B) represent 
PET radiomics feature screening, and the best λ value is 

0.125893, which is indicated by a dashed line. Similarly, (C) 
and (D) indicate CT radiomics feature extraction, and the best 

λ value is 0.091030.  

Figure 4. ROC (receiver operator characteristic) curves of the 
three models in the training and validation cohorts. In the 

figure, the abscissa "1-Specificity" also means false positive 
rate, the ordinate "Sensitivity" means true positive rate, the 
blue line represents the CT model, the green line represents 
the PET model, and the orange line represents the combined 

model. 

Figure 5. DCA 
(decision curve 

analysis) curves of 
the three models in 

the training and 
validation cohorts. 
In the figure, the 
black dotted line 
represents the CT 

model, the red 
dotted line             

represents the PET 
model, the green 

dotted line           
represents the 

combined model, 
and the two solid 
lines are special 
reference lines. 
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DISCUSSION 
 

Accurately predicting the PD-L1 status is crucial 
for developing effective clinical treatment strategies 
in NPC primary tumor. This approach is especially 
important for individuals with advanced                    
nasopharyngeal cancer, as precise forecasting of              
PD-L1 high level can guide the use of combined            
immune blockade therapy for improved treatment 
efficacy and improved prognosis. Radiomics can            
provide more detailed information on tumor biology 
and the microenvironment complementing visual 
features through comprehensive quantification of 
tumor phenotypes and provides an emerging and 
noninvasive research method for current research. 
However, radiomic-related predictive models for            
PD-L1 expression status in NPC were not developed 
prior to our study, which may be related to                
significant geographical differences in the disease. 
Several studies, such as the research conducted by 
Zheng et al., have investigated PD-L1's expression 
level before surgery for neck and head squamous cell 
tumors, but the research did not include                   
nasopharyngeal carcinoma patients. Additionally, the 
focus of the study was on traditional contrast-
enhanced CT imaging omics, which does not involve 
relevant functional metabolic information (35, 36). 

In our study, advanced imaging with 18F-FDG 
PET/CT further reflected intratumor heterogeneity at 
the functional metabolic level (37). Univariate analysis 
and multivariate logistic analysis ultimately revealed 
the SUVmax was a separate forecaster of the PD-L1 
expression state, which was incorporated into the 
combined model. Previous research have found the 
positive relationship between FDG uptake and PD-L1 
presence level in nasopharyngeal tumor cells (38, 39). 
Increased FDG uptake is generally linked to the              
production of glucose transporter type 1 (GLUT1), 
Hypoxia-Inducible Factor-1α (HIF-1α), and                    
phosphorylated Signal Transducer and Activator of 
Transcription 3 (pSTAT3) (38), while Latent                   
Membrane Protein 1 (LMP1) of EBV can increase         
PD-L1 expression in tumor cells while increasing 
pSTAT3; conversely, blocking pSTAT3 can reduce 

LMP1-induced PD-L1 expression (39). 
In this research, according to the radiomic                

characteristics of PET/CT before surgery in NPC              
patients and the above independent predictor               
SUVmax, we developed CT, PET and combined              
models of prediction for expression of PD-L1. The 
combined model had stable and good diagnostic           
performance and good clinical benefit. The CT model 
in the validation group was less sensitive, and the 
PET model's overall performance in the validation 
group was not as good as that in the training cohort, 
which might be mainly related to the insufficient  
robustness of the model because of the study's small 
sample size. In other studies of neck and head            
squamous cell tumors, Zheng's team constructed             
PD-L1 expression radiomics prediction models based 
on enhanced CT with large sample sizes; in the                
cohorts of training and validation, the model’s AUCs 
in identifying PD-L1 positivity and negativity              
respectively were 0.802 and 0.852, additionally the 
AUCs for the model, distinguishing PD-L1 height and 
low, were 0.889 and 0.834, respectively (35, 36). We 
hypothesize that endovascular contrast media               
improve the difference in density between diseased 
and normal tissue and provide blood supply to the 
lesion, which may help enhance the diagnostic              
performance and sensitivity of the model. In our              
future research, we may consider combining              
angiography with PET/CT imaging along with             
expanding the size of the sample. 

In addition, studies predicting PD-L1 expression 
in other malignancies via 18F-FDG PET/CT radiomics 
have focused mainly on NSCLC. In an initial PET/CT 
imaging study of 334 NSCLC patients, Zhao et al.           
reported that clinical stage was an important               
indicator of various PD-L1 expression, and their   
combined radiomics model’s AUCs respectively were 
0.769 and 0.718 within the groups of training and 
validation (22). In another PET/CT radiomics study of 
255 NSCLC patients, Li et al. constructed CT, PET, and 
combined models that predicted PD-L1 high and low 
status among their validation set, reaching respective 
AUCs of 0.661, 0.745, and 0.762, and the combined 
model outperformed the separate CT and PET models 
(40). Compared to these studies, which included        
different tumor types, we constructed radiomic              
prediction models that included different features, 
but the prediction models integrating PET/CT               
radiomics characteristics and other risk factors had 
better diagnostic efficacy in predicting tumors PD-L1 
level. 

Within our study, the combined model based on 
PET/CT scans was the first non-invasive prediction 
model for PD-L1 expression in NPC; this model has 
good diagnostic performance and clinical application 
value. The finding preliminarily showed the PET/CT 
radiomic study’s potential value for effectively               
estimating PD-L1 level in NPC, as in other                      
malignancies (22, 23, 25). Nonetheless, our study                
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Modles Training Validation 
  Statistics P Statistics P 

Hosmer-Lemeshow test         
CT c2=5.491 0.704 c2=3.903 0.866 

PET c2=5.136 0.743 c2=8.153 0.419 
Combined c2=6.090 0.637 c2=10.134 0.256 

DeLong test         
CT and PET Z=-0.166 0.8684 Z=1.175 0.240 

CT and Combined Z=-1.750 0.080 Z=-0.143 0.887 
PET and Combined Z=-1.741 0.081 Z=-2.587 0.010 

Table 4. Results of the Hosmer-Lemeshow and DeLong tests 
for the three models. (CT modle,  the model based on CT            
radiomics features; PET modle, the model based on PET           

radiomics features; Combined modle, the model based on CT 
and PET radiomics features and SUVmax). 
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encounters certain constraints, attributable to its 
retrospective design and limited sample size, and it is 
necessary to expand sample and carry out                         
prospective multicenter research and validation in 
the future. 

 
 

CONCLUSION 
 

In this study, a combined model based on the              
independent predictor SUVmax and the radiomic 
characteristics of PET/CT was constructed to                
evaluate PD-L1 status in NPC and was found to be 
superior to CT or PET alone. This finding reveals that 
this combined model may be effective at predicting                 
individuals with elevated PD-L1 expression, giving 
medical professionals a new strategy for screening 
patients who might benefit from immunotherapy. 
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