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Grading evaluation study of atlas based auto-
segmentation of organs at risk in thorax   

INTRODUCTION 

The current radiotherapy strategy is to                 
improve the local control rate of the tumor as 
much as possible to reduce the possibility of  
recurrence, while having a quantitative                  
understanding of the radiation dose to organs at 
risk (OARs) (1), so as to avoid normal tissue             
complications induced by excess radiation dose, 
leading to a sharp decline in the patient quality 
of life. Therefore, accurately delineating the          
normal tissue contour is one of the important 

prerequisites for precise radiotherapy. 
Although manual delineation is the gold 

standard for delineating normal tissue contours 
(2), this work can be time consuming and                
laborious. Even if manual delineation is                   
conducted according to the guidelines, there are 
still intra and inter-observer variabilities. These 
variabilities may affect the evaluation of the 
quality of radiotherapy plans, which is one of the 
main sources of error in radiotherapy plans (3). 
To overcome these shortcomings,                       
auto-segmentation algorithm has been                 
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ABSTRACT 

Background: The grading evaluation of atlas based auto-segmentation (ABAS) 
of organs at risk (OARs) in thorax was studied. Materials and Methods: Forty 
patients with thoracic cancer were included in this study, and for each 
thirteen thoracic OARs were delineated by an experienced radiation 
oncologist. The patients were randomly grouped into the training and the test 
dataset (20 each). The investigated ABAS strategies included single-atlas 
(Single), majority voting with 5 atlas matches (MV5) and simultaneous truth 
and performance level estimation (STAPLE) with 5 atlas matches (ST5). The 
Dice similarity coefficient (DSC), the difference of the Euclidean distance 
between centers of mass (ΔCMD), the difference of volume (ΔV), maximum 
Hausdorff distance (MHD) and average Hausdorff distance (AHD) between 
auto-segmented and manual contours were calculated. Results: Most of the 
index values (33/65) of ST5 were optimal. There were differences in the 
grading results for the five indexes. With DSC, five, four and four OARs were 
graded into Level 3, Level 2 and Level 1, respectively. The mean DSC values 
ranged from 0.88 to 0.96, from 0.73 to 0.79, and from 0.53 to 0.62 for the 
Level 3, Level 2 and Level 1, respectively. Conclusion: Grading evaluation of 
ABAS of thoracic OARs based on the DSC proved to be feasible and relatively 
more reliable. The thoracic OARs auto-segmentation was divided into three 
levels based on the DSC. Level 3 OARs can be auto-segmented, Level 2 OARs 
delineations need to be manually modified after the auto-segmentation, and 
Level 1 OARs are not recommended for the auto-segmentation.  
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risk.  
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developed and start to be widely used. At             
present, most commercial auto-segmentation 
software uses atlas-based auto-segmentation 
(ABAS) algorithm (4).  

Auto-segmentation of thoracic OARs has been 
reported in literatures (5-8). The OARs of study 
included the lungs, spinal cord, heart, esophagus 
and trachea. Great vessel was not taken into             
account. Eric et al. (9) outlined the substructure 
of the heart, but did not include other important 
thoracic OARs such as lungs and spinal cord. In 
this paper, we attempt to outline the necessary 
thoracic OARs as comprehensively as possible, 
making the results more universal. 

Generally, there are four types of geometric 
evaluation indexes to verify the accuracy of auto
-segmentation software. These indexes are Dice 
similarity coefficient (DSC), moment, maximum 
Hausdorff distance (MHD) and average 
Hausdorff distance (AHD) (4). Some studies on 
the auto-segmentation of the thoracic OARs              
involved only two or three types of indexes, 
which was not sufficient to fully evaluate the  
accuracy of auto-segmentation (5-8). For example, 
Eduard et al. (8) used DSC and MHD for the               
thoracic and abdomen OARs. In this study, we 
investigated the use of all four types of indexes 
for the purpose. Among them, the moment index 
includes the difference of the Euclidean distance 
between centers of mass (ΔCMD) and the              
difference of volume (ΔV), which could present 
more details for the auto-segmented contours of 
the unsatisfactory performance. 

At present, there were few literatures on the 
grading evaluation of auto-segmentation            
software to delineate the thoracic OARs for             
clinical use. Most studies (5-9) simply calculated 
the geometrical indexes of each OAR. Delia et al. 
(10) combined the DSC, ΔCMD and AHD indexes in 
the auto-segmentation study of breast cancer to 
access the accuracy levels of each OAR. There 
was also a literature that added subjective               
scoring (11), but their research did not focus on 
whether each OAR could be generated using  
auto-segmentation software. In this study, we 
graded the accuracy of auto-segmentation of 
thoracic OARs as comprehensively as possible 
by the five indexes in three levels.  

Accurate identification of OARs in thorax is 

648 

difficult for all OARs with ABAS to date.                   
However, some thoracic OARs can be fairly            
accurately segmented with ABAS, while the             
segmentation accuracy of some other OARs can 
be limited. Therefore, it is necessary to develop a 
grading method to fully evaluate the                       
performance of auto-segmentation of thoracic 
OARs so that ABAS can be properly used on the 
segmentation of thoracic OARs. This is, to our 
knowledge, the first time that comprehensive 
geometric indexes were used to gradedly                
evaluate ABAS based on comprehensively              
grading the thoracic OARs. More importantly, we 
graded ABAS into three different levels under 
the consideration of clinical feasibility. In the 
present work, grading evaluation of ABAS of 
fourteen kinds of thoracic OARs which include 
the left lung, right lung, spinal cord, heart, 
esophagus, chest wall, aorta, pulmonary artery, 
pulmonary vein, superior vena cava, inferior  
vena cava, skin, trachea and brachial plexus on 
computed tomography (CT) images was studied. 
Three auto-segmentation methods were                  
compared with manual delineation. Five                 
geometric indexes were used to quantitatively 
evaluate the accuracy of ABAS. The time                 
difference between auto-segmentation and  
manual delineation was also compared.  

 
 

MATERIALS AND METHODS 
 

Patient selection and contour methods 
We retrospectively selected forty patients 

with thoracic malignant tumors treated in our 
center between November and December 2018. 
We included patients with lung, esophageal and 
thymic tumors to ensure the diversity of atlas 
library. CT scans of each patient were obtained 
by a Siemens Somatom Definition AS CT Scanner 
System (Siemens Healthcare, Erlangen,                
Germany). The slice thickness of the CT scans 
was 3mm. The images were transferred to              
Pinnacle3 treatment planning system (TPS) 
v9.10 (Philips Healthy, Fitchburg, WI, USA).             
Following the Radiation Therapy Oncology 
Group (RTOG) guidelines [12], an experienced 
radiotherapist in our center manually delineated 
thirteen thoracic OARs, including the left lung (L 
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Lung), right lung (R Lung), spinal cord (SC), 
heart, esophagus (ESO), chest wall (CW), aorta 
(AOR), pulmonary artery (PA), pulmonary in 
(PV), superior vena cava (SVC), inferior vena 
cava (IVC), skin and trachea of forty patients on 
the Pinnacle TPS. The brachial plexus was not 
included because of the limitation of CT contrast 
and resolution. 

Forty patients were randomly divided into 
two groups, the atlas training dataset and the 
test dataset. The atlas training dataset contained 
twenty patients, and the other twenty patients 
were included into the test dataset. According to 
the modeling requirements of the latest version 
of commercial software MIM 6.8.7 (MIMvista 
Corp., Cleveland, US-OH), one patient with               
average anatomy in training dataset was set to 
the model atlas, and the other nineteen were set 
to the object atlases. For the test dataset, we 
used the ABAS tool of MIM for OARs                         
auto-segmentation. 

 

Atlas based auto-segmentation 
Description of ABAS tool 

The ABAS is a method to segment new images 
based on previously segmented images. The             
primary factor to ensure the accuracy of ABAS is 
the accuracy of image registration. Differences in 
the anatomical structure will cause registration 
errors, and the determination of the average  
patient will alleviate this situation. So, the first 
step is to select an average patient as the model 
atlas, the rest as object atlases, and then                   
registering the object atlases one by one to the 
model atlas to get the corresponding spatial            
correspondence. The above steps are the                     
establishment process of the atlas library. 

When a new image needs to be segmented, it 
will be registered to the model atlas and the          
corresponding spatial correspondence is                 
compared to those of the object atlases. Then the 
most similar object atlases are selected from the 
atlas library, that is, the best match atlases, and 
their contours are propagated to the new image. 
Atlas selection includes single-atlas and                 
multi-atlas. Single-atlas is to select one best 
match atlas from the atlas library. In order to 
improve the robustness of image segmentation, 
multi-atlas has more than one best match           

atlases, which is related to the fusion of multiple 
atlas tags. At present, common tag fusion               
algorithms are major voting algorithm [13] and 
simultaneous truth and performance level             
evaluation (STAPLE) algorithm [14]. The majority 
voting algorithm selects the tags of each voxel 
that most atlases appeared. The STAPLE                   
algorithm calculates a probability model based 
on the similarity between each selected atlas 
and the new image, and weighted fuses the tags 
of each atlas spread on each voxel. 

 

Implementation of ABAS tool 
The MIM 6.8.7 was used to create atlas               

library by the twenty training patients for                
thoracic OARs. The CT images of the twenty test 
patients were transmitted to MIM, and their auto
-segmented contours were obtained after setting 
the auto-segmentation region, OARs, atlas              
selection and fusion algorithms. This study used 
two atlas selection methods both the single-atlas 
and multi-atlas. And for the test patients using 
multi-atlas, 5 best match atlases were selected 
based on the research results of Pirozzi (15). For 
the multi-atlas mode, the two major fusion             
algorithms, major voting and STAPLE, were             
selected. Therefore, we studied three                        
auto-segmented contours based on different  
algorithms: single-atlas based contour (Single); 
multi-atlas based contour with majority voting 
algorithm (MV5); multi-atlas based contour with 
STAPLE algorithm (ST5). The manual contour 
(MC) was used as the gold standard to evaluate 
the OARs’ performance by the above three                
auto-segmentation methods. 

 

Geometric evaluation 
In order to grade the accuracy of ABAS tools 

for the auto-segmentation of thoracic OARs, the 
Dice similarity coefficient (DSC), moment,              
maximum Hausdorff distance (MHD) and               
average Hausdorff distance (AHD) were used to 
access the geometric differences between                
auto-segmented and manual contours.  

The DSC (16) was calculated by using equation 
1. 

   (1) 
 

Where; Vmanual is the volume of manual contour 

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
18

.4
.6

47
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
32

23
24

3.
20

20
.1

8.
4.

5.
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
rr

.c
om

 o
n 

20
25

-1
0-

16
 ]

 

                             3 / 10

http://dx.doi.org/10.52547/ijrr.18.4.647
https://dor.isc.ac/dor/20.1001.1.23223243.2020.18.4.5.5
https://ijrr.com/article-1-3273-en.html


and Vatlas is the volume of the auto-segmented 
contour. The range of DSC is 0-1. If DSC is 1, then 
the two contours are coincident perfectly, and if 
DSC is 0, then the two don’t overlap at all. 

Moment metrics include the difference of the 
Euclidean distance between centers of mass 
(ΔCMD) and the difference of volume (ΔV).  

The MHD (17) refers to the maximum distance 
between two point sets of the two contours, and 
is sensitive to the region with the largest               
difference in segmentation. The metric is              
commonly used in auto-segmentation studies. 

The AHD [17] describes the average distance 
between two contours. The smaller the AHD is, 
the smaller the difference is between them. 
When the DSC is close to 1, the AHD might be a 
good index for distinguishing contours’                     
difference. 

 
Statistical analysis and tests 

Statistical analysis of these geometric indexes 
with different atlas selections and fusion                  
algorithms were performed using the Wilcoxon 
signed ranks tests with p<0.05 considered               
statistically significant. All analyses were                   
performed using SPSS version 17.0 (SPSS,              
Chicago, IL, USA).  

 
Clinical Efficiency 

The times taken by MIM's ABAS tool to               
auto-segment the thirteen thoracic OARs                  
involved in this study were also recorded. 

 

The establishment of standard of grading 
evaluation 

At present, there was no universal standard 
of the grading evaluation of auto-segmentation 
of thoracic OARs. Most of the literatures used 
the DSC [5-10]. In this paper, DSC was used as the 
main index for grading evaluation, and the other 
four indexes were also studied and their grading 
results were compared with DSC’s. After the 
best of three auto-segmentation methods of             
Single, MV5 and ST5 was selected, the                 
performance of fourteen thoracic OARs with the 
best method was graded into several levels.  

RESULTS 
 

Atlas accuracy evaluation with three different 
auto-segmentation methods 

Tables 1 and 2 shown the mean values and 
statistical analysis of the five geometric indexes 
of the thirteen thoracic OARs’ auto-segmented 
contours generated by ST5, MV5 and Single 
methods. 

ST5 was the best performing auto-
segmentation method. Most of the indexes 
(33/65) were the best values, compared to those 
derived with other methods. The mean DSCs of 
eight OARs were higher than those of the MV5 
and Single methods. The mean ΔCMDs of nine 
OARs were smaller than the other two. In the 
method, the mean values of ΔV and AHD of six 
OARs were the smallest, and the mean values of 
MHD of four OARs were the smallest. 

The overall accuracy of MV5 and Single                  
methods was lower than ST5, but some indexes 
were the best, which could be divided into the 
following three cases. The first case was that the 
mean ΔCMD (R Lung), ΔV (AOR, trachea and 
ESO), MHD (heart, AOR and IVC), AHD (AOR and 
ESO) of MV5 method and the mean ΔCMD (Chest 
Wall) of Single method were the best, but there 
were no statistically significant differences in 
these indexes compared with ST5. The second 
case was that the mean value of all the indexes of 
R Lung, L Lung and skin auto-segmented                   
contours generated by MV5 were the best,               
except the mean ΔCMD of R Lung, which had  
statistically significant differences compared 
with ST5. But the mean DSCs of all the methods 
were high (DSC>0.93). The third case was that 
the mean values of all the indexes of chest wall 
and trachea auto-segmented contours generated 
by MV5 were the best, and there were significant 
differences in these indexes between MV5 and 
ST5, except for the mean ΔCMD of chest wall, 
ΔCMD and ΔV of trachea. 

In order to investigate the performance of 
auto-segmentation of each thoracic OAR by MIM, 
the following analyses were conducted using ST5 
method.  
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Auto-segmentation results for ST5 method 
Figure 1 showed the consistency between the 

thirteen OARs’ auto-segmented contours                  
generated by ST5 and manual contours. For the 
R Lung, L Lung, skin, heart and spinal cord, the 
mean value ranges of DSC, ΔCMD, ΔV, MHD and 
AHD were 0.88-0.96, 0.13-2.06 cm, 6.50%-
11.24%, 1.85-8.85 cm, 0.11-0.58 cm,                      
respectively. 

For the AOR, chest wall, trachea and PA, the 
mean value ranges of DSC, ΔCMD, ΔV, MHD and 
AHD were 0.73-0.79, 0.53-1.29 cm,                       
15.95%-39.41%, 2.12-6.51 cm, 0.28-0.46 cm, 

respectively. 
For the SVC, ESO, IVC and PV, the mean value 

ranges of DSC, ΔCMD, ΔV, MHD and AHD were 
0.53-0.62, 0.89-1.17 cm, 28.53%-35.44%,              
1.87-2.65 cm, 0.29-0.44 cm, respectively.  

 

Clinical efficiency of auto-segmentation 
The average times of these thirteen OARs 

manually delineated by the radiotherapist are 
shown in table 2. The total time for manual             
delineation was 97.4 minutes, and the total time 
for OARs auto-segmentation one by one was 31.0 
minutes. If all the thirteen OARs were                

Structure 
DSC ΔCMD (cm) ΔV (%) MHD (cm) AHD (cm) 

ST5 MV5 Single ST5 MV5 Single ST5 MV5 Single ST5 MV5 Single ST5 MV5 Single 

R Lung 0.96 0.97 0.96 0.13 0.08 0.13 6.50 2.48 4.43 2.18 1.71 2.17 0.11 0.07 0.10 

L Lung 0.94 0.96 0.95 0.28 0.12 0.15 9.97 3.25 5.88 3.45 1.97 3.05 0.17 0.08 0.13 

Skin 0.93 0.97 0.96 2.06 0.95 1.43 11.24 6.09 8.29 8.85 6.41 7.14 0.58 0.27 0.37 

Heart 0.90 0.89 0.87 0.40 0.42 0.49 7.37 8.55 8.12 1.85 1.82 2.26 0.24 0.25 0.31 

Spinal Cord 0.88 0.86 0.82 1.34 1.79 2.26 8.80 15.04 17.63 2.74 3.46 4.44 0.13 0.18 0.31 

AOR 0.79 0.78 0.75 0.92 0.97 1.25 24.49 18.83 18.98 2.72 2.52 3.32 0.28 0.26 0.34 

Chest Wall 0.77 0.83 0.82 1.29 1.12 1.05 39.41 9.93 13.43 6.51 3.47 4.13 0.46 0.24 0.28 

Trachea 0.75 0.79 0.73 0.53 0.57 1.01 34.06 11.31 23.67 4.27 2.20 3.34 0.25 0.14 0.25 

PA 0.73 0.68 0.62 0.71 0.76 0.87 15.95 28.24 25.40 2.12 2.37 2.33 0.28 0.32 0.38 

SVC 0.62 0.55 0.56 1.17 1.33 1.26 28.53 44.40 34.80 1.87 2.26 2.26 0.33 0.42 0.42 

ESO 0.57 0.54 0.50 0.89 1.00 1.82 32.77 31.73 33.27 2.10 2.05 2.98 0.29 0.28 0.49 

IVC 0.56 0.48 0.41 0.91 0.96 1.34 30.16 46.83 50.24 2.17 2.06 3.85 0.43 0.48 0.88 

PV 0.53 0.43 0.49 1.00 1.10 1.02 35.44 44.92 38.60 2.65 2.72 2.99 0.44 0.54 0.52 

Table 1. Mean value of the five indexes with STAPLE 5 (ST5), majority voting 5 (MV5) and single atlas (Single) auto-segmentation 
methods. 

Structure 
p 

T (min) 
DSC ΔCMD (cm) ΔV (%) MHD (cm) AHD (cm) 

R Lung a, c c a, c a, c a, c 7.00 

L Lung a, c a a, c a, c a, c 7.10 

Skin a, b a, b a, b a, b a, b / 

Heart b, c - - - b, c 9.50 

Spinal Cord a, b, c a, b a, b a, b, c a, b, c 3.20 

AOR b, c - - c c 6.20 

Chest Wall a, b - a, b, c a, b a, b 19.60 

Trachea a, c b, c c a, c a, b, c 17.30 

PA a, b, c b a, b a, b a, b, c 4.80 

SVC a a a, b, c a, b a, b 2.00 

ESO b b, c - a, b, c b, c 12.00 

IVC a, b, c b, c a, b b, c b, c 3.70 

PV a, c - - - a 5.00 

Table 2. Results of the statistical analysis of STAPLE 5 (ST5), majority voting 5 (MV5) and single-atlas (Single) auto-segmentation 
methods and the time of manual delineation. a: a statistical difference between ST5 and MV5 (p<0.05), b: a statistical difference 

between ST5 and Single (p<0.05), c: a statistical difference between MV5 and Single (p<0.05), -: the differences between the three 
is not statistically significant. 
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auto-segmented in one time, it only took 3.2 
minutes. Therefore, auto-segmentation of the 

thirteen OARs saved by 96.7% compared to 
manual delineation. 

Figure 1. (A) The Dice similarity                  
coefficient (DSC), (B) the difference of the 

Euclidean distance between centers of 
mass (ΔCMD), (C) the difference of volume 

(ΔV), (D) maximum Hausdorff distance 
(MHD) and (E) average Hausdorff distance 

(AHD)of the thirteen thoracic organs at 
risk (OARs) between STAPLE 5 (ST5) and 
manual delineation. Error bar indicates 

standard error. 

Clinical efficiency of auto-segmentation 
The average times of these thirteen OARs 

manually delineated by the radiotherapist are 
shown in table 2. The total time for manual              
delineation was 97.4 minutes, and the total time 
for OARs auto-segmentation one by one was 
31.0 minutes. If all the thirteen OARs were              
auto-segmented in one time, it only took 3.2 
minutes. Therefore, auto-segmentation of the 
thirteen OARs saved by 96.7% compared to 
manual delineation. 

 
The standard of grading evaluation 

To further investigate the accuracy and               
applicability of the auto-segmentation tools on 
the thoracic OARs, attempts were made to grade 
the results of the auto-segmentation for the  
thirteen thoracic OARs based on the five                    
geometric indexes. As shown in table 3, OARs 
auto-segmentation was divided into three levels 
by each index. Namely, Level 1 OARs were not 
recommended to use auto-segmentation, and 
Level 2 OARs required manual modification     

after auto-segmentation, and Level 3 OARs could 
completely replace manual delineation.  

 
Grading evaluation of thirteen thoracic OARs 
using ST5 method 

According to the standard of grading                    
evaluation, the results of the auto-segmentation 
for the thirteen thoracic OARs based on the five 
geometric indexes, which shown in table 4 and 
figure 2. According to the DSC, the R Lung, L 
Lung, skin, heart and spinal cord were Level 3 
(mean DSC range: 0.88-0.96), which could              
completely replace manual delineation. The 
AOR, chest wall, trachea and PA were Level 2 
(mean DSC range: 0.73-0.79), which required to 

 Level DSC 
ΔCMD 
(cm) 

ΔV (%) 
MHD 
(cm) 

AHD (cm) 

1 (0-0.7] (1.0-∞)  (20-∞) (2.2-∞) (0.4-∞) 

2 (0.7-0.8] (0.5-1.0] (10-20] (1.0-2.2] (0.2-0.4] 

3 (0.8-1.0] [0-0.5] [0-10] [0-1.0] [0-0.2] 

Table 3. The standard of grading evaluation by five geometric 
indexes 
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be manually modified after auto-segmentation. 
The SVC, ESO, IVC and PV were Level 1 (mean 
DSC range: 0.53-0.62), which could not use               
auto-segmentation. 

There were differences between the grading 
results of the other four indexes and those of the 
DSC. For the spinal cord, it was rated as Level 3 
by DSC, but according to ΔCMD, MHD that was 
rated as Level 1. Similarly, the chest wall and 
skin were rated higher by DSC. However, there 
were also cases where the grade according to 
DSC was lower than the other indexes. For small 
OARs such as SVC, IVC, it was rated as Level 1 by 
DSC, but according to ΔCMD, MHD and AHD that 
were rated as Level 2. Moreover, the grading 
results of most of the OARs evaluated by ΔV 
were the same as those of DSC, except the grades 
of the skin, AOR, chest wall and trachea were 
one level lower than those of DSC.  

DISCUSSION 

In this paper, we graded the auto-
segmentation of thirteen important thoracic 
OARs using ST5, MV5 and Single methods in the 
latest version of MIM using five geometric                
indices of DSC, ΔCMD, ΔV, MHD and AHD. The 
results showed that most of the indexes of ST5 
method were better, while the MV5 method only 
had the advantage in automatically segmenting 
the chest wall and trachea (p<0.05). The Single 
method was inferior to the other two methods in 
general. Therefore, ST5 method was chosen as 
the primary one for the grading evaluation. We            
divided the performance of the thirteen OARs 
auto-segmentation based on ST5 method into 
three levels. This provided a clear scope of                
application of MIM’s auto-segmentation of the 
thirteen thoracic OARs. The research methods 
used in this study are also applicable to the 
grading evaluation of other auto-segmentation 
software applications. 

In this study, forty cases were randomly                
divided into the training dataset and the test  
dataset on average. The two datasets did not 
overlap, which means the patients whose OARs 
auto-segmentation were graded did not include 
those in the training dataset. 

La Macchia et al. (18) evaluated the accuracy of 
three commercial auto-segmentation software 
for segmentation of sixteen OARs in head and 
neck. Since our center primarily treat thoracic 
tumor patients, the auto-segmentation study of 
thoracic OARs is the focus. We attempted to            
incorporate more thoracic OARs into our study 
such as the L Lung, R Lung, spinal cord, heart, 
ESO, thoracic wall, AOR, PA, PV, SVC, IVC, skin, 
trachea and brachial plexus, etc. However, due 
to the limitation of CT contrast and resolution, it 
was difficult to identify complex brachial plexus 
by human expert (19), and MIM could not                    
currently automatically segment it. It might be 
necessary to rely on multimodal image fusion to 
achieve auto-segmentation of the brachial              
plexus. 

Previous clinical evaluations based on              
auto-segmentation of thoracic OARs showed 
that both ABAS and deep learning techniques 
could save time, which is consistent with our 

  DSC ΔCMD ΔV MHD AHD 
R Lung 3 3 3 2 3 
L Lung 3 3 3 1 3 

Skin 3 1 2 1 1 
Heart 3 3 3 2 2 

Spinal Cord 3 1 3 1 3 
AOR 2 2 1 1 2 

Chest Wall 2 1 1 1 1 
Trachea 2 2 1 1 2 

PA 2 2 2 2 2 
SVC 1 1 1 2 2 
ESO 1 2 1 2 2 
IVC 1 2 1 2 1 
PV 1 2 1 1 1 

Table 4. Grading evaluation results of the thirteen thoracic 
organs at risk (OARs) by each of the five indexes. 

Figure 2. Grading evaluation results of the thirteen thoracic 
organs at risk (OARs) by the Dice similarity coefficient (DSC), 
the difference of the Euclidean distance between centers of 

mass (ΔCMD), the difference of volume (ΔV), maximum 
Hausdorff distance (MHD) and average Hausdorff distance 

(AHD) 

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
18

.4
.6

47
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
32

23
24

3.
20

20
.1

8.
4.

5.
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
rr

.c
om

 o
n 

20
25

-1
0-

16
 ]

 

                             7 / 10

http://dx.doi.org/10.52547/ijrr.18.4.647
https://dor.isc.ac/dor/20.1001.1.23223243.2020.18.4.5.5
https://ijrr.com/article-1-3273-en.html


Ying et al. / Grading evaluation of auto-segmentation  

Int. J. Radiat. Res., Vol. 18  No. 4, October 2020 654 

study (11). Compared to manually delineating 
thirteen thoracic OARs, MIM achieved a                    
significant time benefit by 96.7%. The sum time 
for automatically segmenting OARs one by one 
was 31.0 minutes, which was much longer than 
the time for segmenting all OARs together (3.2 
minutes). The reason was that MIM took about 2 
minutes to select atlas matches for each                   
auto-segmentation. In addition, because MIM 
and the common TPS have the ability to                   
auto-segment the skin, manual delineation time 
of skin was not recorded. 

Our results showed that ABAS was not               
completely applicable for thoracic OARs, so 
grading auto-segmentation accuracy of OARs 
was an important task. We divided the                   
segmentation accuracy of each OAR into three 
levels according to the DSC (table 4). For the R 
Lung, L Lung, skin, heart and spinal cord, the 
accuracy of auto-segmentation was good (DSC: 
0.88-0.96), So they did not need manual                  
modification. These Level 3 OARs could be               
auto-segmented. For the AOR, chest wall,                 
trachea and PA, the accuracy of auto-
segmentation was medium (DSC: 0.73-0.79). 
These auto-segmented contours needed to be 
modified in part, but there was still considerable 
time benefit compared with manual delineation 
slice-by-slice. These Level 2 OARs required  
manually modification after auto-segmentation. 
For the SVC, ESO, IVC and PV, the accuracy of 
auto-segmentation was poor (DSC: 0.53-0.62). 
These Level 1 OARs should be delineated               
manually rather than auto-segmentation. The 
grading results of the above OARs except SVC 
based on the study of breast cancer were                
consistent with ours [10]. The brachial plexus, 
which could not currently be automatically            
segmented by MIM, should also belonged to  
Level 1. 

At the same time, we also graded auto-
segmentation of each OAR according to the           
other four indexes: ΔCMD, ΔV, MHD and AHD, 
and found that the results were somewhat             
different from the DSC. For the SVC and IVC,              
although DSC were 0.62/0.56 (Level 1), the             
value of the distance indexes of ΔCMD, MHD and 
AHD were 1.17/0.91 cm, 1.87/2.17 cm and 
0.33/0.43 cm (Level 2), respectively. The main 

reason was that these organs were small. Even if 
the segmentation of them was not good, the             
distance difference was not large. However, the 
situation of the spinal cord was opposite, in 
which the DSC was 0.88 (Level 3), and the ΔCMD 
and MHD were as high as 1.34 cm and 2.74 cm 
(Level 1), respectively. This was because the 
structure of the spinal cord was cylindrical, and 
it was difficult to judge the starting and ending 
slices when the auto-segmentation was                   
performed, therefore the ΔCMD and MHD of the 
superior-inferior (SI) direction were large. And 
chest wall and skin had similar situations. For 
trachea, the grading result of ΔV (Level 3) was 
inconsistent with DSC (Level 2), which was 
caused by three outliers (ΔV: 136.27%, 
168.98%, 146.62%). After removing these            
outliers, ΔV and DSC were 13.49% (Level 2) and 
0.78 (Level 2), respectively. Although these four 
indexes could not be directly used for grading 
evaluation, they could be used to analyze the 
inconsistencies between auto-segmented and 
manual contours. 

Because the size and shape of each OAR are 
different, the geometric indexes will be affected 
by these characteristics of OARs (20). Future 
work will grade each OAR according to specific 
range of geometric indexes, combined with             
subjective scores, rather than using unified              
indexes range to grade all OARs. 

The effect of contour differences on              
dosimetry has not been studied in this paper. Lo 
et al. (21) reported that differences in contours 
caused dose differences in the peer review of the 
lung cancer target and normal tissues                      
delineation. Robert et al. (2) found in the                
diametric evaluation of auto-segmentation for 
breast cancer patients that although the                     
geometric differences of the left anterior                   
descending artery between manual delineation 
and auto-segmentation were large, no                       
dosimetric differences were caused. Therefore, 
we did not conduct a study of dosimetric                 
differences. Grading evaluation of OARs                  
auto-segmentation by geometric indexes and 
dosimetric indexes can be studied in the future. 
The combination of the above two kinds of            
indexes may improve the accuracy of grading. At 
present, the performance of ABAS tools is              
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mainly limited by two factors: the contrast of the 
image and the volume of the object (11). For soft 
tissues with low contrast, ABAS tools are not 
easy to identify the boundary, and even                
radiation oncologists need great efforts to                 
determine the exact boundary. In recent years, 
machine learning technology, especially deep 
learning method, shows promising results in its 
use in medical imaging specialty (22-24).                     
Therefore, machine learning technology may 
become the main development direction of             
auto-segmentation software in the future. 

 
 

CONCLUSION 

 
Grading evaluation of ABAS of thoracic OARs 

according to the DSC is feasible. Thoracic OARs 
auto-segmentation was graded into three levels, 
namely Level 3, 2, 1. The grading results may be 
useful in providing guidance for of the future 
ABAS development is to improve the algorithm 
so that more OARs can be automatically                   
segmented.  
 
 
Conflicts of interest: Declared none. 
 
 

REFERENCES 
 
1. D’Andrea M, Benassi M, Strigari L (2016) Modeling Radio-

therapy Induced Normal Tissue Complications: An Over-
view beyond Phenomenological Models. Comput Math 
Methods Med, 2016: 1-9. 

2. Kaderka R, Gillespie EF, Mundt RC, Bryant AK, Sanudo-
Thomas CB, Harrison AL, Wouters EL, Moiseenko V, Moore 
KL, Atwood TF, Murphy JD (2019) Geometric and dosimet-
ric evaluation of atlas based auto-segmentation of cardiac 
structures in breast cancer patients. Radiother Oncol, 131: 
215-220. 

3. Herk MV (2004) Errors and margins in radiotherapy. Semin 
Radiat Oncol, 14: 52-64. 

4. Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, 
Veeraraghavan H, Yang J (2014) Vision 20/20: Perspectives 
on automated image segmentation for radiotherapy. Med 
Phys, 41: 050902. 

5. Kim J, Han J, Ailawadi S, Baker J, Hsia A, Xu Z, Ryu S (2016) 
Multi-Atlas Based Automatic Organ Segmentation for Lung 
Radiotherapy Planning. Med Phys, 43: 3433. 

6. Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K 
(2017) Automatic segmentation of airway tree based on 
local intensity filter and machine learning technique in 3D 
chest CT volume. Int J Comput Assist Radiol Surg, 12: 245-
261. 

7. Rebouças Filho PP, Cortez PC, Da SBA, Vh CA, Jm RST (2017) 
Novel and powerful 3D adaptive crisp active contour 
method applied in the segmentation of CT lung images. 
Med Image Anal, 35: 503-516. 

8. Eduard S, Marcus DM, Tim F (2014) Multiatlas segmentation 
of thoracic and abdominal anatomy with level set-based 
local search. J Appl Clin Med Phys, 15: 22–38. 

9. Morris ED, Ghanem AI, Pantelic MV, Walker EM, Han X, 
Glide-Hurst CK (2019) Cardiac Substructure Segmentation 
and Dosimetry Using a Novel Hybrid Magnetic Resonance 
and Computed Tomography Cardiac Atlas. Int J Radiat 
Oncol Biol Phys, 103: 985-993. 

10. Ciardo D, Gerardi MA, Vigorito S, Morra A, Dell'acqua V, 
Diaz FJ, Cattani F, Zaffino P, Ricotti R, Spadea MF, Riboldi 
M, Orecchia R, Baroni G, Leonardi MC, Jereczek-Fossa BA 
(2017) Atlas-based segmentation in breast cancer radio-
therapy: Evaluation of specific and generic-purpose atlas-
es. Breast, 32: 44-52. 

11. Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, 
van der Stoep J, van Elmpt W, Dekker A (2018) Clinical 
evaluation of atlas and deep learning based automatic 
contouring for lung cancer. Radiother Oncol, 126: 312-
317. 

12. Kong FM, L Quint MM, Bradley J (2012) Atlas for organs at 
risk (OAR) in thoracic radiation therapy. Available from: 
https://www.rtog.org/CoreLab/ContouringAtlases/
LungAtlas.aspx. 

13. Heckemann RA, Hajnal JV, Paul A, Daniel R, Alexander H 
(2006) Automatic anatomical brain MRI segmentation 
combining label propagation and decision fusion. Neu-
roimage, 33: 115-126. 

14. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth 
and performance level estimation (STAPLE): an algorithm 
for the validation of image segmentation. IEEE Trans Med 
Imaging, 23: 903-921. 

15. Pirozzi S, Horvat M, Piper J, Nelson A (2012) Atlas-Based 
Segmentation: Evaluation of a Multi-Atlas Approach for 
Lung Cancer. Med Phys, 39: 3677. 

16. Dice LR (1945) Measures of the amount of ecologic associ-
ation between species. Ecology, 26: 297-302. 

17. Sim DG, Kwon OK, Park RH (1999) Object matching algo-
rithms using robust Hausdorff distance measures. IEEE 
Transactions on Image Processing, 8: 425-429. 

18. La Macchia M, Fellin F, Amichetti M, Cianchetti M, Giano-
lini S, Paola V, Lomax AJ, Widesott L (2012) Systematic 
evaluation of three different commercial software solu-
tions for automatic segmentation for adaptive therapy in 
head-and-neck, prostate and pleural cancer. Radiat Oncol, 
7: 160. 

19. Myo M, Daniel R, Elly K, Michael P, Scott C, Lydia Z, Karen 
W, John S, Siddhartha B (2014) External evaluation of the 
radiation therapy oncology group brachial plexus contour-

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
18

.4
.6

47
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
32

23
24

3.
20

20
.1

8.
4.

5.
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
rr

.c
om

 o
n 

20
25

-1
0-

16
 ]

 

                             9 / 10

http://www.rtog.org/CoreLab/ContouringAtlases/LungAtlas.aspx
http://www.rtog.org/CoreLab/ContouringAtlases/LungAtlas.aspx
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Min,+Myo
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Roos,+Daniel
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Keating,+Elly
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Penniment,+Michael
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Carruthers,+Scott
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zanchetta,+Lydia
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wong,+Karen
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wong,+Karen
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Shakeshaft,+John
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wong,+Karen
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Shakeshaft,+John
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Baxi,+Siddhartha
http://dx.doi.org/10.52547/ijrr.18.4.647
https://dor.isc.ac/dor/20.1001.1.23223243.2020.18.4.5.5
https://ijrr.com/article-1-3273-en.html


Ying et al. / Grading evaluation of auto-segmentation  

Int. J. Radiat. Res., Vol. 18  No. 4, October 2020 656 

ing protocol: several issues identified. J Med Imag Radiat 
Oncol, 58: 360-368. 

20. Isambert A, Dhermain F, Bidault F, Commowick O, Bondiau 
PY, Malandain G, Lefkopoulos D (2008) Evaluation of an 
atlas-based automatic segmentation software for the de-
lineation of brain organs at risk in a radiation therapy clini-
cal context. Radiother Oncol, 87: 93-99. 

21. Lo AC, Liu M, Chan E, Lund C, Truong PT, Loewen S, Cao J, 
Schellenberg D, Carolan H, Berrang T (2014) The Impact of 
Peer Review of Volume Delineation in Stereotactic Body 
Radiation Therapy Planning for Primary Lung Cancer: A 
Multicenter Quality Assurance Study. J Thorac Oncol, 9: 
527-533. 

22. van Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR, 
Slotman BJ, Verbakel WF (2019) Deep learning-based de-
lineation of head and neck organs-at-risk: geometric and 
dosimetric evaluation. Int J Radiat Oncol Biol Phys, 104.  

23. Cardenas CE, McCarroll RE, Court LE, Elgohari BA, Elhala-
wani H, Fuller CD, Kamal MJ, Meheissen MAM, Mohamed 
ASR, Rao A, Williams B, Wong A, Yang J, Aristophanous M 
(2018) Deep Learning Algorithm for Auto-Delineation of 
High-Risk Oropharyngeal Clinical Target Volumes With 
Built-In Dice Similarity Coefficient Parameter Optimization 
Function. Int J Radiat Oncol Biol Phys, 101: 468-478. 

24. Hu P, Wu F, Peng J, Liang P, Kong D (2016) Automatic 3D 
liver segmentation based on deep learning and globally 
optimized surface evolution. Phys Med Biol, 61: 8676.  

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
18

.4
.6

47
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
32

23
24

3.
20

20
.1

8.
4.

5.
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
rr

.c
om

 o
n 

20
25

-1
0-

16
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

http://dx.doi.org/10.52547/ijrr.18.4.647
https://dor.isc.ac/dor/20.1001.1.23223243.2020.18.4.5.5
https://ijrr.com/article-1-3273-en.html
http://www.tcpdf.org

