[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 563-570 Back to browse issues page
Clinical implementation of a PRIMO Monte Carlo-based dose verification and quality assurance model for stereotactic body radiotherapy (SBRT) treatment plans of the lung
B. Sarin , B. Bindhu , B. Saju , P. Raghukumar , R.K. Nair
Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India , sreesarin@gmail.com
Abstract:   (1110 Views)
Background: Natural The validation and clinical implementation of the PRIMO Monte Carlo (MC) model of Clinac®iX Linear accelerator as an independent dose verification and quality assurance (QA) tool for the SBRT lung treatment plans. Materials and Methods: An independent MC based dose verification was performed for ten volumetric modulated arc therapy (VMAT) SBRT treatment plans.The plans generated in the Varian Eclipse treatment planning system (TPS) were recalculated with a PRIMO MC system for identical beam parameters.The log file-based QA was performed by comparing the TPS dose against the dose reconstructed from machine log files and the results were cross-verified with the Mobius3D® verification system. The dose-volume histogram (DVH) based plan comparison and 3D global gamma analysis were carried out. The statistical significance of the differences was tested with the Wilcoxon signed-rank test with a significance level of P < 0.05. Results: No statistically significant differences were observed in PTV and organs at risk (OARs) DVH parameters except for the PTVmax dose for both TPS vs PRIMO independent dose check and TPS vs PRIMO dynalog based QA. The 3D gamma analysis results show a minimum pass rate of 95% between TPS and PRIMO. Mobius3D® results showed a slightly higher percentage variation in the mean dose to PTV and OARs and a slightly lower gamma pass than TPS vs PRIMO results. Conclusion: This study showed that a validated MC model of PRIMO could be used as an effective tool for independent dose verification and machine log-files-based quality assurance of VMAT SBRT plans.  
Keywords: Monte Carlo, independent secondary dose check, PRIMO, dynalog.
Full-Text [PDF 1819 kb]   (777 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. 1. Ojala JJ, Kapanen M K, Hyödynmaa SJ, Wigren TK, Pitkänen MA (2014) Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo‐based dose distributions. Journal of Applied Clinical Medical Physics, 15(2): 4-18. [DOI:10.1120/jacmp.v15i2.4662] [PMID] []
2. Fogliata A and Cozzi L (2017) Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Physica Medica, 44: 157-162. [DOI:10.1016/j.ejmp.2016.11.104] [PMID]
3. Kung JH, Chen GTY, Kuchnir FK (2000) A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Medical Physics, 27(10): 2226-2230. [DOI:10.1118/1.1286553] [PMID]
4. Sun B, Rangaraj D, Boddu S, Goddu M, Yang D, Palaniswaamy G, et al. (2012) Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file analysis against conventional measurement based IMRT QA. Journal of Applied Clinical Medical Physics, 13(5): 140-154. [DOI:10.1120/jacmp.v13i5.3837] [PMID] []
5. Chan S, Lau S, Lee K, Kam K, Yu K, Chan A (2013) An application of trajectory log for volumetric intensity modulated arc therapy (VIMAT) plan quality assurance in a digitally integrated and controlled linear accelerator. Int J Radiat Oncol Biolo Phys, 87(2): S711. [DOI:10.1016/j.ijrobp.2013.06.1884]
6. Olasolo-Alonso J, Vázquez-Galiñanes A, Pellejero-Pellejero S, Pérez-Azorín JF (2017) Evaluation of MLC performance in VMAT and dynamic IMRT by log file analysis. Physica Medica, 33: 87-94. [DOI:10.1016/j.ejmp.2016.12.013] [PMID]
7. Teke T, Bergman AM, Kwa W, Gill B, Duzenli C, Popescu IA (2010) Monte Carlo based, patient‐specific RapidArc QA using Linac log files. Medical Physics, 37(1): 116-123. [DOI:10.1118/1.3266821] [PMID]
8. McGarry CK, Agnew CE, Hussein M, Tsang Y, Hounsell AR, Clark CH (2016) The use of log file analysis within VMAT audits. The British Journal of Radiology, 89(1062): 20150489. [DOI:10.1259/bjr.20150489] [PMID] []
9. Rodriguez M and Brualla L (2019) Treatment verification using Varian's dynalog files in the Monte Carlo system PRIMO. Radiation Oncology, 14(1): 1-7. [DOI:10.1186/s13014-019-1269-1] [PMID] []
10. Hodapp N (2012) The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft...[et al], 188(1): 97-99. [DOI:10.1007/s00066-011-0015-x] [PMID]
11. Kerns JR, Childress N, Kry SF (2014) A multi-institution evaluation of MLC log files and performance in IMRT delivery. Radiation Oncology, 9(1): 1-10. [DOI:10.1186/1748-717X-9-176] [PMID] []
12. Hernandez V, Abella R, Calvo JF, Jurado‐Bruggemann D, Sancho I, Carrasco P (2015) Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques. Medical physics, 42(4): 1911-1916. [DOI:10.1118/1.4915541] [PMID]
13. Bush K, Townson R, Zavgorodni S (2008) Monte Carlo simulation of RapidArc radiotherapy delivery. Physics in Medicine & Biology, 53(19): N359. [DOI:10.1088/0031-9155/53/19/N01] [PMID]
14. McDonald DG, Jacqmin DJ, Mart CJ, Koch NC, Peng JL, Ashenafi MS, et al. (2017) Validation of a modern second‐check dosimetry system using a novel verification phantom. Journal of Applied Clinical Medical Physics, 18(1): 170-177. [DOI:10.1002/acm2.12025] [PMID] []
15. Clemente‐Gutiérrez F and Pérez‐Vara C (2015) Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric‐modulated arc therapy techniques. Journal of Applied Clinical Medical Physics, 16(2): 198-217. [DOI:10.1120/jacmp.v16i2.5190] [PMID] []
16. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Physics in Medicine & Biology, 36(7): 861. [DOI:10.1088/0031-9155/36/7/001] [PMID]
17. Verhaegen F and Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Physics in Medicine & Biology, 48(21): R107. [DOI:10.1088/0031-9155/48/21/R01] [PMID]
18. Ceberg S, Gagne I, Gustafsson H, Scherman JB, Korreman SS, Kjær-Kristoffersen F, et al. (2010) RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. Physics in Medicine & Biology, 55(17): 4885. [DOI:10.1088/0031-9155/55/17/001] [PMID]
19. Gagne, I. M., Ansbacher, W., Zavgorodni, S., Popescu, C., & Beckham, W. A. (2008). A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy. Physics in Medicine & Biology, 53(24), 7167. [DOI:10.1088/0031-9155/53/24/011] [PMID]
20. Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlentherapie und Onkologie, 189(10): 881-886. [DOI:10.1007/s00066-013-0415-1] [PMID]
21. Baro J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 100(1): 31-46. [DOI:10.1016/0168-583X(95)00349-5]
22. Sempau J, Badal A, Brualla L (2011) A PENELOPE‐based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far‐from‐axis fields. Medical Physics, 38(11): 5887-5895. [DOI:10.1118/1.3643029] [PMID]
23. Sempau J, Wilderman SJ, Bielajew AF (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Physics in Medicine & Biology, 45(8): 2263. [DOI:10.1088/0031-9155/45/8/315] [PMID]
24. Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Physics in Medicine & Biology, 57(10): 3013. [DOI:10.1088/0031-9155/57/10/3013] [PMID]
25. Sarin B, Bindhu B, Saju B, Nair RK (2020) Validation of PRIMO monte carlo model of clinac® ix 6mv photon beam. Journal of Medical Physics, 45(1): 24. [DOI:10.4103/jmp.JMP_75_19] [PMID] []
26. Brualla L, Rodríguez M, Sempau J (2018) PRIMO User's Manual Version 0.3. 1.1600. Strahlenklinik, Hufelandstrasse, 55.
27. Videtic GM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR, et al. (2015) A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG Oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys, 93(4): 757-764. [DOI:10.1016/j.ijrobp.2015.07.2260] [PMID] []
28. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Medical Physics, 25(5): 656-661. [DOI:10.1118/1.598248] [PMID]
29. Feuvret L, Noël G, Mazeron JJ, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Physics, 64(2): 333-342. [DOI:10.1016/j.ijrobp.2005.09.028] [PMID]
30. Paddick I and Lippitz B (2006) A simple dose gradient measurement tool to complement the conformity index. Journal of Neurosurgery, 105(Supplement), 194-201. [DOI:10.3171/sup.2006.105.7.194] [PMID]
31. Paganini L, Reggiori G, Stravato A, Palumbo V, Mancosu P, Lobefalo F, et al. (2019) MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO). Radiation Oncology, 14(1): 1-13. [DOI:10.1186/s13014-019-1421-y] [PMID] []
32. Sottiaux A, Baltieri V, Monseux A, Leclercq C, Vanache D, Peiffer F, et al. (2018) 35 Monte Carlo dose calculation of VMAT clinical treatment plans for Novalis TrueBeam STx linac using PRIMO. Physica Medica, 56: 20-21. [DOI:10.1016/j.ejmp.2018.09.048]
33. Tsuruta Y, Nakata M, Nakamura M, Matsuo Y, Higashimura K, Monzen H, et al. (2014) Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Medical Physics, 41(8Part1): 081715. [DOI:10.1118/1.4890592] [PMID]
34. Ojala J and Kapanen M (2015) Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations-the effect on clinical patient treatment planning. J Applied Clinical Medical Physics, 16(6): 213-225. [DOI:10.1120/jacmp.v16i6.5642] [PMID] []
35. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W (2011) Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations. Medical Physics, 38(4): 2208-2221. [DOI:10.1118/1.3567146] [PMID]
36. Han C, Yi J, Zhu K, Zhou Y, Ai Y, Zheng X, et al. (2020) Cross verification of independent dose recalculation, log files based, and phantom measurement‐based pretreatment quality assurance for volumetric modulated arc therapy. J Applied Clinical Medical Physics, 21(11): 98-104. [DOI:10.1002/acm2.13036] [PMID] []
37. Han T, Mikell JK, Salehpour M, Mourtada F (2011) Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model‐based convolution methods in heterogeneous media. Medical Physics, 38(5): 2651-2664. [DOI:10.1118/1.3582690] [PMID] []
38. Agnew A, Agnew CE, Grattan MWD, Hounsell AR, McGarry CK (2014) Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Physics in Medicine & Biology, 59(9): N49. [DOI:10.1088/0031-9155/59/9/N49] [PMID]
39. Chen L, Huang B, Huang X, Cao W, Sun W, Deng X (2018) Clinical evaluation for the difference of absorbed doses calculated to medium and calculated to water by Monte Carlo method. Radiation Oncology, 13(1): 1-9. [DOI:10.1186/s13014-018-1081-3] [PMID] []
40. Fogliata A, De Rose F, Stravato A, Reggiori G, Tomatis S, Scorsetti M, et al. (2018) Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences. Radiation Oncology, 13(1): 1-7. [DOI:10.1186/s13014-018-1022-1] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarin B, Bindhu B, Saju B, Raghukumar P, Nair R. Clinical implementation of a PRIMO Monte Carlo-based dose verification and quality assurance model for stereotactic body radiotherapy (SBRT) treatment plans of the lung. Int J Radiat Res 2022; 20 (3) :563-570
URL: http://ijrr.com/article-1-4326-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652