[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 615-619 Back to browse issues page
Monte Carlo simulation of a new proton therapy technique using bio-nanoparticles and high energy proton beams
M. Ouar , A.S. Amine Dib , M.N. Belkaid , A.H. Belbachir
Laboratoire d'Analyse et d'Application des Rayonnements (LAAR), Department de Genie physique, Université des Sciences et de la Technologie d’Oran Mohamed-Boudiaf USTO-MB, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie , mohammed.ouar@univ-usto.dz
Abstract:   (879 Views)
Background: Currently, many researchers focus their work on the effects of bio-nanoparticles inside the tumor during proton therapy. Indeed, these bio-nanoparticles enhance the absorbed dose especially if they have been settled at the Bragg peak zone. The main goal of this study is to give a new technique that improves and facilitates the clinical protocol during proton therapy for brain tumors by adding nanoparticles to the tumor and using a rotary accelerator with high energy (200 MeV). Materials and Methods: With the use of the Monte Carlo Geant4 code, we simulated a proton therapy of a tumor located in the center of a human head containing bio-nanoparticles. The proton beam energy was chosen large enough to avoid having Bragg's peak at head level. Results: The results revealed that there was an optimization in the deposited energy at the tumor, at the same time the deposited energy at healthy tissue was less compared to ordinary proton therapy. It also showed that the platinum is the most effective bio-nanoparticles used in this work. Conclusion: The addition of bio-nanoparticles to tumors and the use of a high-energy (200 MeV) rotary accelerator improve and facilitate proton therapy. This new technique allows the direction angle of the proton beam to be changed regardless of the position of the tumor, making it effective against moving tumors and preserving healthy tissue. In addition, the dose deposited in the tumor can be increased just by pivoting the head of the accelerator around the organ.
Keywords: Monte Carlo simulation, proton therapy, bio-nanoparticles, rotary accelerator.
Full-Text [PDF 1499 kb]   (449 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Bray F, Ferlay J, Soerjomataram I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin, 68(6): 394-424. [DOI:10.3322/caac.21492] [PMID]
2. Armoogum KS and Thorp N (2015) Dosimetric comparison and potential for improved clinical outcomes of paediatric CNS patients treated with protons or IMRT. Cancers 7: 706-722. [DOI:10.3390/cancers7020706] [PMID] []
3. Peach K, Finst P, Wilson P, Jones B (2011) Accelerator science in medical physics. The British Journal of Radiology, 84: S4-S10. [DOI:10.1259/bjr/16022594] [PMID] []
4. Nikolai K and Lev D (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in-vivo studies. Chem So Rev, 40: 1647-1671. [DOI:10.1039/C0CS00018C] [PMID]
5. Lorenzo T (2021) Physical aspects of gold nanoparticles as cancer killer therapy. Indian J Phys, 95: 225-234. [DOI:10.1007/s12648-019-01679-1]
6. Tabbakh F and Hosmane NS (2020) Enhancement of radiation effectiveness in proton therapy: Comparison between fusion and fission methods and further approaches. Sci Rep, 10: 5466. [DOI:10.1038/s41598-020-62268-5] [PMID] []
7. Dimitriou NM, Tsekenis G, Balanika EC, et al. (2016) Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Nuclear Instruments and Methods in Physics Research B, 373: 126-139.
8. Kim JK, Seo S-J, Kim H-T, et al. (2012) Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol, 57: 8309-8323. [DOI:10.1088/0031-9155/57/24/8309] [PMID]
9. Rezaei H, Zabihzadeh M, Ghorbani M, et al. (2017) Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by 103Pd source. Australas Phys Eng Sci Med, 40: 545-553. [DOI:10.1007/s13246-017-0555-1] [PMID]
10. Rahman WN, Bishara N, Ackerly T, et al. (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy, Nanomed. Nanotech, 5: 136-142. [DOI:10.1016/j.nano.2009.01.014] [PMID]
11. Lacombe S, Porcel E, Scifoni E (2017) Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nano 8, 9 [DOI:10.1186/s12645-017-0029-x] [PMID] []
12. Wayne D Newhauser and Rui Zhang (2015) The physics of proton therapy. Phys Med Biol, 60: R155-R209. [DOI:10.1088/0031-9155/60/8/R155] [PMID] []
13. Liu H and Chang JY (2011) Proton therapy in clinical practice. Chin J Cancer, 30: 5. [DOI:10.5732/cjc.010.10529] [PMID] []
14. Fracchiolla F, Lorentini S, Widesott L, et al. (2015) Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning. Phys Med Biol, 60: 8601-8619. [DOI:10.1088/0031-9155/60/21/8601] [PMID]
15. Sea A, John A, Amako K, et al. (2003) Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res A, 506: 250-303. [DOI:10.1016/S0168-9002(03)01368-8]
16. Allison J, Amako K, Apostolakis J, et al. (2016) Recent developments in Geant4. Nucl Instrum Methods Phys Res A, 835: 186-225. [DOI:10.1016/j.nima.2016.06.125]
17. Bernal MA and Liendo JA (2009) An investigation on the capabilities of the PENELOPE MC code in nanodosimetry. Med Phys, 36(2): 620-5. [DOI:10.1118/1.3056457] [PMID]
18. Report 85 (2011) Fundamental quantities and units forionizing radiation. J ICRU, 11(1): 1-31. [DOI:10.1093/jicru_ndr028] [PMID]
19. IAEA TRS 461 Relative Biological Effectiveness in Ion Beam Therapy, International Atomic Energy Agency, 2008.
20. De Napoli M, Agodi C, Battistoni G, et al. (2012) Carbon fragmentation measurements and validation of the Geant4 nuclear reaction models for hadrontherapy. Phys Med Biol, 57(22): 7651-7671. [DOI:10.1088/0031-9155/57/22/7651] [PMID]
21. Jerimy CP and Wayne DN (2005) Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams. Phys Med Biol, 50: 3859-3873. [DOI:10.1088/0031-9155/50/16/014] [PMID]
22. Ono Takashi, Yabuuchi Tomonori, Nakamura Tatsuya, et al. (2017) High dose hypofractionated proton beam therapy is a safe and feasible treatment for central lung cancer. Radiol Oncol, 51(3): 324-330. [DOI:10.1515/raon-2017-0023] [PMID] []
23. Cho J, Gonzalez-Lepera C, Manohar N, et al. (2016) Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement. Phys Med Biol, 61: 2562-2581. [DOI:10.1088/0031-9155/61/6/2562] [PMID]
24. Ferguson S, Ahmad S, Ali I (2020) Simulation study of proton arc therapy with the compact single-room MEVION-S250 proton therapy system. Journal of Radiotherapy in Practice, 19(4): 1- 8. [DOI:10.1017/S1460396919000888]
25. Belamri C, Amine Dib AS, Ahmed HB (2016) Monte Carlo simulation of proton therapy using bio-nanomaterials. Journal of Radiotherapy in Practice, 15: 290-295. [DOI:10.1017/S1460396916000145]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ouar M, Amine Dib A, Belkaid M, Belbachir A. Monte Carlo simulation of a new proton therapy technique using bio-nanoparticles and high energy proton beams. Int J Radiat Res 2022; 20 (3) :615-619
URL: http://ijrr.com/article-1-4348-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4645