:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 657-664 Back to browse issues page
Potential implications of the radiation-induced bystander effect for spatially fractionated radiotherapy: A theoretical simulation study
F. Mahmoudi , D. Shahbazi-Gahrouei , N. Chegeni , M. Saeb , V. Sadeghi , S. Hemati
Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , shahbazi24@yahoo.com
Abstract:   (886 Views)
Background: It has been found that the bystander effect plays a key role in the survival of cells exposed to highly non-uniform radiation beams. However, the linear-quadratic (LQ) model cannot predict these effects well. The present study aimed to explore the potential impact of the radiation-induced signaling effects on treatment plans for spatially fractionated radiation therapy (SFRT) using a numerical radiobiological model. Materials and Methods: Two tomotherapy-based SFRT plans were created using commercially available software in this work. The tumor response to these plans was modeled by both the conventional LQ model and a bystander model incorporating the indirect effect of radiation. We have investigated how dose-volume histograms (DVHs), dose distribution, equivalent uniform dose (EUD), and mean dose change with radiation-induced signaling effects. Results: When the intercellular signaling effects are included in the predictive survival model, the cell-killing within the low-dose regions of GRID fields increases. This leads to an increase in the EUD and means dose. These effects are more striking for the LATTICE radiotherapy plan, which contains high dose gradients in three dimensions. Conclusion: Incorporating radiation-induced signals in tumor cells response to SFRT significantly deviates from the LQ model predictions. Therefore, it is recommended to use the radiobiological models which take both the signaling and radiation effects into account to predict survival in highly modulated radiation beams, especially in LATTICE radiotherapy.
Keywords: GRID therapy, spatially fractionated radiotherapy (SFRT), tomotherapy, bystander effect, LATTICE radiotherapy.
Full-Text [PDF 2244 kb]   (389 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Mahmoudi F, Shahbazi-Gahrouei D, Chegeni N (2021) The role of the spatially fractionated radiation therapy in the management of advanced bulky tumors. PJMPE, 27(2): 123-35. [DOI:10.2478/pjmpe-2021-0015]
2. Gholami S, Nedaie HA, Longo F, Ay MR, Wright S, Meigooni AS (2016) Is grid therapy useful for all tumors and every grid block design? J Appl Clin Med Phys, 17(2). [DOI:10.1120/jacmp.v17i2.6015] [PMID] []
3. Gholami S, Nedaie HA, Longo F, Ay MR, Dini SA, Meigooni AS (2017) Grid block design based on monte carlo simulated dosimetry, the linear quadratic and Hug-Kellerer radiobiological models. Journal of Medical Physics, 42(4): 213. [DOI:10.4103/jmp.JMP_38_17] [PMID] []
4. Zhang H, Zhong H, Barth RF, Cao M, Das IJ (2014) Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Medical physics, 41(2): 021727. [DOI:10.1118/1.4862837] [PMID]
5. Meigooni AS, Dou K, Meigooni NJ, Gnaster M, Awan S, Dini S, et al. (2006) Dosimetric characteristics of a newly designed grid block for megavoltage photon radiation and its therapeutic advantage using a linear quadratic model. Medical physics, 33(9): 3165-73. [DOI:10.1118/1.2241998] [PMID]
6. Sheikh K, McNutt T, Bell L, Moore J, Hrinivich W, Teslow T, et al. (2018) Comparison of Treatment Planning Approaches for Spatially Fractionated Irradiation of Deep Tumors. Int J Radiat Oncol Biol Phys, 102(3): e499. [DOI:10.1016/j.ijrobp.2018.07.1418]
7. Sathishkumar S, Dey S, Meigooni AS, Regine WF, Kudrimoti M, Ahmed MM, et al. (2002) The impact of TNF-α induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technol Cancer Res Treat, 1(2): 141-7. [DOI:10.1177/153303460200100207] [PMID]
8. Kanagavelu S, Gupta S, Wu X, Philip S, Wattenberg MM, Hodge JW, et al. (2014) In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res, 182(2): 149-62. [DOI:10.1667/RR3819.1] [PMID] []
9. Asur RS, Sharma S, Chang C-W, Penagaricano J, Kommuru IM, Moros EG, et al. (2012) Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiat Res, 177(6): 751-65. [DOI:10.1667/RR2780.1] [PMID] []
10. Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ (2015) High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett, 356(1): 52-7. [DOI:10.1016/j.canlet.2013.10.032] [PMID] []
11. Pakniyat F, Nedaie HA, Mozdarani H, Mahmoudzadeh A, Salimi M, Griffin RJ, et al. (2020) Enhanced response of radioresistant carcinoma cell line to heterogeneous dose distribution of grid; the role of high-dose bystander effect. Int J Radiat Biol, 96(12): 1585-96. [DOI:10.1080/09553002.2020.1834163] [PMID]
12. Pakniyat F, Gholami S, Nedaie H, Mozdarani H, Mahmoudzadeh A, Salimi M (2020) Demonstration of bystander response in high dose technique of grid using theoretical calculation by linear quadratic model along with experimental investigations. Int J Radiat Res, 18(3): 495-504.
13. Zwicker RD, Meigooni A, Mohiuddin M (2004) Therapeutic advantage of grid irradiation for large single fractions. IJROBP, 58(4): 1309-15. [DOI:10.1016/j.ijrobp.2003.07.003] [PMID]
14. Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR (2017) Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol, 56(8): 1048-59. [DOI:10.1080/0284186X.2017.1299939] [PMID]
15. Peng V, Suchowerska N, Esteves ADS, Rogers L, Mackonis EC, Toohey J, et al. (2018) Models for the bystander effect in gradient radiation fields: Range and signalling type. Journal of Theoretical Biology, 455: 16-25. [DOI:10.1016/j.jtbi.2018.06.027] [PMID]
16. Butterworth KT, McGarry CK, Trainor C, McMahon SJ, O'Sullivan JM, Schettino G, et al. (2012) Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields. Phys Med Biol, 57(10): 3197. [DOI:10.1088/0031-9155/57/10/3197] [PMID]
17. Mahmoudi F, Chegeni N, Bagheri A, Asl JF, Batiar MT (2021) Impact of radiobiological models on the calculation of the therapeutic parameters of Grid therapy for breast cancer. Applied Radiation and Isotopes, 174: 109776. [DOI:10.1016/j.apradiso.2021.109776] [PMID]
18. Yan Y, Dou Y, Weng X, Wallin A (2010) SU‐GG‐T‐256: An Enhanced DICOM‐RT Viewer. Medical Physics, 37(6Part19): 3244. [DOI:10.1118/1.3468648]
19. Sheikh K, Hrinivich WT, Bell LA, Moore JA, Laub W, Viswanathan AN, et al. (2019) Comparison of treatment planning approaches for spatially fractionated irradiation of deep tumors. J Appl Clin Med Phys, 20(6): 125-33. [DOI:10.1002/acm2.12617] [PMID] []
20. Zhang X, Penagaricano J, Yan Y, Liang X, Morrill S, Griffin RJ, et al. (2016) Spatially fractionated radiotherapy (GRID) using helical tomotherapy. J Appl Clin Med Phys, 17(1). [DOI:10.1120/jacmp.v17i1.5934] [PMID] []
21. Zhang X, Penagaricano J, Yan Y, Sharma S, Griffin R, Hardee M, et al. (2014) Application of spatially fractionated radiation (GRID) to helical tomotherapy using a novel TOMOGRID template. Technol Cancer Res Treat: tcrtexpress. 2013.600261. [DOI:10.7785/tcrtexpress.2013.600261] [PMID]
22. McMahon SJ, Butterworth KT, McGarry CK, Trainor C, O'Sullivan JM, Hounsell AR, et al. (2012) A computational model of cellular response to modulated radiation fields. IJROBP, 84(1): 250-6. [DOI:10.1016/j.ijrobp.2011.10.058] [PMID]
23. McMahon SJ, Butterworth KT, Trainor C, McGarry CK, O'Sullivan JM, Schettino G, et al. (2013) A kinetic-based model of radiation-induced intercellular signalling. PLoS One, 8(1): e54526. [DOI:10.1371/journal.pone.0054526] [PMID] []
24. McMahon SJ, McGarry CK, Butterworth KT, Jain S, O'Sullivan JM, Hounsell AR, et al. (2015) Cellular signalling effects in high precision radiotherapy. Physics in Medicine and Biology, 60(11): 4551. [DOI:10.1088/0031-9155/60/11/4551] [PMID]
25. Partridge M (2008) A radiation damage repair model for normal tissues. Phys Med Biol, 53(13): 3595. [DOI:10.1088/0031-9155/53/13/014] [PMID]
26. Ebert MA, Suchowerska N, Jackson MA, McKenzie DR (2010) A mathematical framework for separating the direct and bystander components of cellular radiation response. Acta Oncol, 49(8): 1334-43. [DOI:10.3109/0284186X.2010.487874] [PMID]
27. Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M (2006) Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technol Cancer Res Treat, 5(6): 607-12. [DOI:10.1177/153303460600500608] [PMID]
28. Peñagarícano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P (2010) Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. IJROBP, 76(5): 1369-75. [DOI:10.1016/j.ijrobp.2009.03.030] [PMID]
29. Butterworth KT, McGarry CK, Trainor C, O'Sullivan JM, Hounsell AR, Prise KM (2011) Out-of-field cell survival following exposure to intensity-modulated radiation fields. IJROBP, 79(5): 1516-22. [DOI:10.1016/j.ijrobp.2010.11.034] [PMID] []
30. Butterworth KT, Ghita M, McMahon SJ, Mcgarry CK, Griffin RJ, Hounsell AR, et al. (2017) Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy. Brit J Radiol, 90(1069): 20160485. [DOI:10.1259/bjr.20160485] [PMID] []



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page