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ABSTRACT

Background: To investigate whether features of 5-mm peritumoral regions could
significantly improve the predictive efficacy of a radiomics model based on solid
pulmonary tumors at distinguishing lung adenocarcinoma(LAC) from granuloma(GR).
Materials and Methods: We retrospectively evaluated 167 lung tumors pathologically
proven to be LAC (96) or GR (71) and divided them into training group (116) and
testing (51) group. We delineated each tumor with three different measures using the
tumor and its 5-mm peritumoral region. Then, we extracted 465 features from each
volume of interest(VOI) and chose the optimal features to build the diagnostic models.
We built four different models using different methods. Finally, we compared the
performance of the four models in the test set. Results: The area under the curve
(AUC) of each model in the test group was 0.765 (95% confidence interval(Cl): 0.620—
0.909), 0.797 (95%Cl: 0.670-0.924), and 0.784 (95%Cl: 0.647—-0.920), respectively.
Results of the DelLong test showed that the differences between model 2, model 3,
and model 1 were not significant. Results of net reclassification improvement(NRI)
showed that model 2 and model 3 had better differential diagnostic efficacy than
model 1, with accuracies(ACCs) of 0.784, 0.745, and 0.686, respectively, but the
differences were not significant (P>0.05). Moreover, the nomogram had good
diagnostic and predictive abilities, with an AUC of 0.848 (95%Cl: 0.736—0.961) and an
ACC of 0.804. Conclusions: Features of 5-mm peritumoral regions improved the
predictive ability of the radiomics model based on the solid pulmonary tumor, but the

difference was not significant.

INTRODUCTION

Lung cancer is one of the most common tumors
and the leading cause of cancer-related death
worldwide. Lung tumors are primarily divided into
small cell lung cancer and non-small cell lung cancer,
among which LAC is the most common pathological
type (1-2). Currently, the primary method of detecting
LAC is chest computed tomography (CT) ®). However,
the imaging findings of CT (such as spiculation and
lobulation) lack specificity, making it difficult to
distinguish LAC from lung GR ). The "gold standard"
for diagnosing LAC is pathological biopsy, but this is
an invasive examination and is not suitable for all
patients 5-6), This problem not only causes a serious
waste of medical resources worldwide but also
increases the psychological burden of patients (7-8).
Therefore, clinical practice urgently needs a non-
invasive and highly accurate method of distinguishing
GR and LAC.

Radiomics, was first proposed by Philippe Lambin
in 2012 ), and has been subsequently confirmed by
many studies to play an important role in the

diagnosis, treatment, and prognosis of lung cancer.
The differential diagnosis ability of radiomics is
superior to that of traditional clinical and medical
imaging methods and it provides new ideas and
directions for solving several clinical problems (10,
Many studies have confirmed that radiomics features
have advantages for distinguishing LAC and GR (11-12),
and some of these features are linked to pathological
results (13), Recently, several studies have also found
that the lung interstitium surrounding the tumor has
good diagnostic features, especially regarding the
aggressiveness of early LAC (!9 and the likelihood of
lymph node metastasis (15). Beig et al. (16) also showed
that the 5-mm peritumoral region has the strongest
diagnostic features compared with other regions
around the tumor for distinguishing LAC and GR.

Aim and the novelty, we aimed to build a better
radiomics diagnostic model that incorporates the
5-mm peritumoral region to distinguish LAC and GR.
To the best of our knowledge, few studies have
investigated whether features of the 5-mm (1617
peritumoral region can significantly improve the
ability of the radiomics model using CT scans of the


http://dx.doi.org/10.52547/ijrr.20.4.2
https://ijrr.com/article-1-4458-en.html

[ Downloaded from ijrr.com on 2026-02-03 ]

[ DOI: 10.52547ijrr.20.4.2 |

738 Int. J. Radiat. Res., Vol. 20 No. 4, October 2022

solid pulmonary tumor to distinguish LAC and GR.
This study aims to explore this question and it is also
the innovation of our research.

MATERIALS AND METHODS

Patients

We retrospectively analyzed the clinical data of
167 patients with LAC or lung GR confirmed by
pathology between June 2017 and December 2020.
The inclusion criteria were as follows: (1) cases with
clear pathological diagnostic results (LAC or GR) by
surgical or pathological biopsy; (2) a CT scan was
performed within 1 week before treatment or biopsy;
(3) solid or part-solid tumor with clear borders; (4)
good image quality without metal or motion artifacts;
and (5) complete clinical and imaging information of
the patient was available. The exclusion criteria were
as follows: (1) disqualifying image quality, including
lack of uniform layer thickness (not 1 mm) or
different algorithms were used to reconstruct the
image; (2) ground-glass nodules and multiple tumors
in one section of the lung (confused with other
tumors) (11-12); (3) large calcification or cavities and
large fat components in the tumor; (4) tumors
surrounded by excessive inflammation or atelectasis,
or tumors stuck to the chest wall making it difficult to
delineate the surrounding lung regions; and (5)
incomplete clinical data. The inclusion and exclusion
of patients are shown in figure 1.

385 cases of lung adenocarcinomas or granulomas
confirmed by pathology

Exclusion criteria:

1.poor image quality (99)
- — 2.Unable to reconstruct
Exclusion criteria: 1mm image (34)

4.ground glass nodules (51) (¢ 3.Incomplete clinical data
S.multiple nodules (31) 3)

| 167 patients with 167 lung masses were included I

| Training set (N = 116) | | Test set (N = 51) |

Figure 1. Patients’ selection. Schematic diagram of case
selection process with exclusion criteria.

After applying the above inclusion and exclusion
criteria, we included 167 cases. Among them, 96
cases were LAC and 71 were GR (92 male and 75
female patients; mean age: 59.16 * 10.60 years).
Then, all cases were randomly divided into a training
group and test group at a ratio of 7:3. Finally, we
collected the basic clinical information and serum
tumor markers of patients (before treatment)
through the hospital's records system, including
age, location, family history, smoking history,
Ferrtin, Alpha-fetoprotein(AFP), Carcinoembryonic
antigen(CEA), Carbohydrate antigen125(CA125),
Carbohydrate antigen153(CA153),Carbohydrate
antigen(CA19-9), Neuron Specific Enolase(NSE), and

Cytokeratin 19 fragment antigen(CYFRA21-1). The
thresholds of the different tumor markers were 291.0
ng/mL (Ferrtin), 25 ng/mL (AFP), 5.0 ng/mL (CEA),
30 U/mL (CA125), 32.4 U/mL (CA153), 37.0 U/mL
(CA19-9), 163 ng/mL (NSE), and 3.3 ng/mL
(CYFRA21-1). If the values were higher than the
threshold, it was recorded as 1, otherwise, it was 0.
The acquisition of the imaging data and related
clinical data of the cases was approved by the
institutional ethics committee of our hospital (ethics
approval number: 2020-122).

Acquiring CT images

We used a Siemens Somatom Sensa-Tion16 CT
(Siemens Healthcare, Germany) or a GE LightSpeed
VCT64 row spiral CT (GE Healthcare, USA) to collect
CT images with the following flat sweep parameters:
tube voltage, 120 kV; tube current, 100 or 150 mA;
pitch, 1.15:1 or 1.375:1; layer thickness, 5 mm;
interval, 5 mm; rotation time, 0.5 or 0.8 s/turn; and
enhanced scan parameters: tube voltage, 120 kV;
tube current, 250 mA; pitch, 0.984:1; the whole lung
was a 1.00-mm layer, and the rotation time was 0.8 s/
turn. The patient usually lay on their back with arms
raised above the head. The scan range was from the
tip of the lung to the bottom of the lung, and the scan
was completed in a single held breath.

Tumor segmentation and extracting radiomics
features

We imported all CT images into the open-source
3D-Slicer software (www.3D-Slicer.com, version:
4.10.2), and then two of our hospital’s imaging
department doctors (with 7 and 14 years’ experience
in chest imaging diagnosis) who were blinded to the
pathological results independently analyzed and semi
-automatically delineated three different VOIs for
each tumor on the transverse section in the CT
plain-phase. VOI1: only tumors were delineated;
VOI2: tumors and their 5-mm peritumoral regions
were delineated (using the “margin function” in
3D-slicer); VOI3: the 5-mm peritumoral regions alone
(using the “hollow function” in 3D-slicer). In the
process of delineating tumors, we tried to avoid non-
tumor components such as calcifications and cavities.
When there was disagreement between the two
doctors, the chief physician of our department made
the final decision (18). To facilitate selecting features
and evaluating their contribution to the
identification of LAC or GR, we standardized
(min-max normalization) the clinical data. The
process of delineating the VOIs is shown in figure 2.

A total of 465 features were extracted from every
VOI using Pyradiomics (Python 3.7.1, version: 3.0.1)
and normalized (Max-min normalization) the data we
have obtained.

Feature selection and building the radiomics
models
The workflow of this study is shown in figure 3,
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we compared the intraclass and interclass correlation
coefficients (ICCs) between different features in the
training set to eliminate unstable features. ICCs
greater than 0.75 indicated good consistency and
stability. We also used the Mann-Whitney U test
(P<0.05) to eliminate redundant features that did not
contribute to the differential diagnosis.

¢

Figure 2. Three VOlIs. Images show different measures of
three VOlIs. A: Only the tumor was delineated (VOI1). B: The
tumor and surrounding 5-mm peritumoral region was
delineated (VOI2). C: Only the 5-mm peritumoral region

(VOI3).
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Figure 3. Workflow. Flow chart of our study, including lesion
segmentation, feature extraction and selection, model

construction, and validation of results.

Subsequently, the max-relevance and min-
redundancy (mRMR) were used to select the groups
of features that had the greatest correlation to the
result but the least correlation between the features.
Many studies (19-21) have confirmed that this method
can remove redundant features and improve the final
model performance. From the mRMR analysis, we
only selected top-ranked features.

The least absolute shrinkage and selection
operator (Lasso) applied to eliminate redundant
features. Lasso regression (L1 regularization) can
reduce the coefficients of unimportant features to 0,
which avoids overfitting and multicollinearity of the
model. We used 5-fold cross-validation to select the
most optimal features to build multiple linear
regression models. Features from VOI1 were used to
build model 1, features from VOI2 were used to build
model 2, and then we combined features from VOI1
and VOI3 to build model 3. We used variance inflation
factor (VIF) and heatmaps (2 to measure the
multicollinearity of our models. In order to ensure
the independence of the test set, all features selection
and comparison are done in the training set. Finally,
we evaluated their diagnostic capabilities in the
independent test set.

Nomogram construction and comparing the
performances of the models

The independent t-test (or Mann-Whitney U test)
and Chi-square test were used to analyze clinical
data, and model 3 incorporated the significant clinical
information of the patients to develop the nomogram
as model 4. We chose the calibration curve to
measure the predictive effect of the nomogram (23).
After that, we calculated the AUC of the receiver
operating curve (ROC) and the ACC of each group of
models in the training group and test group to
calculate their 95% CI.

Subsequently, we used the DeLong test (24 to
compare whether there were statistically significant
differences between the four different ROC curves in
the test group. NRI was performed in the test set to
evaluate whether model 2, model 3, or model 4 were
better than model 1. Finally, we drew a decision
curve (DCA) to observe the net benefit of the four
models.

Statistical analysis

We used R studio (https:www.r-project.org,
version: 4.0.5) for all statistical analyses and Prism
(GraphPad Software, San Diego, CA, USA; version:
8.0.2) to draw all graphics. All continuous variables
are expressed as mean * standard deviation (SD). If
the data followed a normal distribution, we used the
independent t-test to compare statistical differences,
otherwise, the Mann-Whitney U test was used for
data with non-normal distributions. For categorical
variables, we used the Chi-square test or Fisher's
exact test. We used Pearson's correlation coefficient
and Kendal's correlation coefficient to measure the
correlation between different data. Heatmaps were
used for visualizations. VIF was used to estimate the
multicollinearity of our models, and the VIF of every
feature in the model less than 10 was considered not
to have strong multicollinearity. P<0.05 of two-sided
tests was regarded as a statistically significant
difference.

RESULTS

Basic clinical information of the patients

The pathological results of patients and the data
regarding serum tumor markers are listed in table 1.
Among the 167 cases there are 92 man and 75
women patients (mean age of 59.16 + 10.60 years
old). There were 71 cases (training group: 51 and test
group: 20) in the benign group, while 96 cases
(training group: 65 and test group: 31) were in the
malignant group. More information is listed in table
1.
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Table 1. Baseline characteristics of patients in training group and test group.

Clinic Training group (n=116) Test group (n =51
characteristic LAC GR* P - value LAC GR* P - value
(n=65) (n=51) (n=31) (n=20)
Age 52.8419.49 63.94+8.39 0.000* 62.5819.07 54.40+12.24 0.009*
Gender 0.837 0.493
Male 37 (56.92) 30(58.82) 14 (45.16) 11 ( 55.00)
Female 28 (43.08) 21(41.18) 17 (54.84) 9(45.00)
Family History 0.07 0.633
Absent 56 (86.15) 49 (96.08) 23(74.19) 16 (80.00)
Present 9(13.85) 2(3.92) 8(25.81) 4(20.00)
Smoking History 0.491 0.685
Absent 46 (90.20) 39 (76.47) 20(64.52) 14 (70.00)
Present 19(29.23) 12 (23.53) 11(35.48) 6(30.00)
Location 0.286 0.09
R upper* 26 (0.40) 22 (43.14) 11(35.48) 11 (55.00)
R middle* 5(7.69) 1(1.96) 5(16.13) 1(5.00)
R lower* 15(23.08) 8(15.69) 1(3.23) 4(20.00)
L upper* 14 (21.54) 11(21.56) 10(32.26) 3(15.00)
L lower* 5(7.69) 9(17.65) 4(12.90) 1(5.00)
Ferrtin*(<291 ng/mL) 0.466 0.316
Normal 61(93.85) 46 (90.20) 29(93.55) 17 (85.00)
Abnormal 4(6.15) 5(9.80) 2(6.45) 3(15.00)
AFP* (<25ng/mL) 0.707 1.000
Normal 63(96.92) 50 (98.04) 31(100.00) 20 (100.00)
Abnormal 2(3.08) 1(1.96) 0(0.00) 0(0.00)
CEA* (<5ng/mL) 0.000* 0.005
Normal 44 (67.69) 49 (96.08) 21(67.74) 20 (100.00)
Abnormal 31(32.31) 2(3.92) 10(32.26) 0(0.00)
CA125* (<30.0U/mL) 0.703 0.315
Normal 60(92.31) 48 (94.12) 30(96.77) 18 (90.00)
Abnormal 5(7.69) 3(5.88) 1(3.23) 2(10.00)
CA153* (<32.4U/mL) 0.374 0.417
Normal 64 (98.46 ) 51(100) 30(96.77) 20 (100.00)
Abnormal 1(1.54) 0(0) 1(3.23) 0(0.00)
CA19-9*(< 37.0U/mL) 0.976 0.094
Normal 60(92.31) 47 (92.16) 27 (87.10) 20 (100.00)
Abnormal 5(7.69) 4(7.84) 4(12.90) 0(0.00)
NSE* (<16.3ng/mL) 0.424 0.427
Normal 29 (44.62) 19(37.26) 12 (38.71) 10 (50.00)
Abnormal 36 (55.38) 32(62.74) 19(61.29) 10 (50.00)
CYFRA21-1*(<3.3ng/mL) 0.748 0.370
Normal 52(0.80) 42 (82.35) 25(80.65) 18 (90.00)
Abnormal 13(0.20) 9(17.65) 6(19.35) 2(10.00)
R upper: Right upper lobe; R middle: Right middle lobe; R lower: Right lower lobe; L upper: Left upper lobe; L lower: Lower lobe of left lung;
LAC: Lung adenocarcinoma; GR: Granuloma; AFP: Alpha-fetoprotein; CEA: Carcinoembryonic antigen; CA125: Carbohydrate antigen125;
ICA153: Carbohydrate antigen153; CA19-9: Carbohydrate antigen19-9; NSE: Neuron specific enlase; CYFRA21-1: Cytokeratin 19 fragment|
lantigen; p value < 0.05.

Results of the independent t-test (or Mann-
Whitney U test) and Chi-square test showed that the
age and CEA level were significantly different
between the two groups (P=0.009 and P<0.001,
respectively). The results of multiple logistic
regression (clinical laboratory model;Clin-Lab)
showed that the odds ratio(OR) of age and CEA were
1.155 (95%CI: 1.092-1.236, P<0.001) ,10.984 (95%
Cl: 2.409-83.781, P<0.001), respectively. The AUC of
the Clin-Lab model is 0.806 (95%CI: 0.689-0.924)
with an ACC of 0.706 in the test group.

Results of feature selection

In total, 32, 28, and 41 features of VOI1, VOI2, and
VOI3, respectively, were eliminated due to their ICCs
being less than 0.75. Subsequently, the Mann-
Whitney U test results showed that 180, 211, and 207

features of VOI1, VOI2, and VOI3, respectively, were
not significant in distinguishing LAC and GR. This left
a total of 253, 226, 217 features of VOI1, VOI2, and
VOI3, respectively. Then we selected the top 100
features of mRMR and performed Lasso regression
(L1 Regularization) with 5-fold cross-validation in the
training group (figure 4).

Ultimately, eight, nine, and five features of VOI1,
VOI2, and VOI3, respectively, were screened out.
Eight features from VOI1 were used to build model 1,
nine features from VOI2 were used to build model 2,
after that we combined the features from VOI1 and
VOI3 to build model 3. We performed the Lasso
operation due to some features from VOI1 and VOI3
(pre) having strong correlations (figure A.1).
Therefore, we ultimately chose nine features (seven
from VOI1 and two from VOI3) to build model 3. The
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Figure 4. Lasso. Lasso regression results with 5-fold cross
validation. The X-axis shows the log (Penalty coefficient A), and
the Y-axis shows the misclassification rate. A total of eight of
VOI1 (A), nine of VOI2 (B), five of VOI3 (C), and nine of VOI1
and VOI3 (D) non-zero coefficient features were selected to
build the prediction models.

VIF values of all models were less than 10. The
coefficients and features of the models are listed in
(table A.1) and were used to calculate the radiomics
score.

Mode-1: 0.6324 + 1.2920 x wavelet. HHL _ glem _
DifferenceVariance - 0.8290 x wavelet. HHL _ glrlm _
ShortRunHighGrayLevelEmphasis - 1.4727 x wavelet.
HLL _ glem _ Correlation - 1.0684 x wavelet. HLH _
glem _ MCC + 0.55631 x wavelet. LLL _ glem _ Correla-
tion + 0.34572 x original _ glcm _ ClusterProminence
+ 1.28243 x wavelet. LHH _ glrlm _ GrayLevelNonUni-
formity-0.46432 x wavelet. LHL _ glrlm _ LongRun

LowGrayLevelEmphasis.

Model-2: 0.4056 - 2.8414 x log.sigma.3.0.mm.3D _
glem _ Autocorrelation + 0.57284xwavelet. LLH _
glrlm _ GrayLevelNonUniformity - 0.07003 x wavelet.
LHL _ glrlm _ LongRunLowGrayLevelEmphasis +
0.01920 x wavelet. LHL _ glem _ Idmn + 0.72341 x
log.sigma.3.0mm.3D _ glem _Imcl - 0.78388 x
log.sigma.1.0.mm.3D _ glem _ MCC + 0.58241 x wave-
let. LHH _ glrlm _ GrayLevelNonUniformity + 0.74316
x wavelet. HHL _ glrlm _ ShortRunHighGrayLevelEm-
phasis - 0.02061 x log.sigma.3.0.mm.3D _ glem _ Clus-
terProminence.

Model-3: 0.6365 + 1.02961 x wavelet. HHL _ glcm
_ DifferenceVariance - 1.25279 x wavelet. HLL _ glem
_ Correlation - 0.94404 x wavelet. HLH _ glem _ MCC -
0.58965 x wavelet. LLL _ glem _ Correlation +
0.21258 x original _ glem _ ClusterProminence +
0.96581 x wavelet. LHH _ glrlm _ GrayLevelNonUni-
formity - 0.46123 x wavelet. LHL _ glrlm _ LongRun-
LowGrayLevelEmphasis - 0.30427 x wavelet. HHL _
glrlm _ ShortRunHighGrayLevelEmphasis (Pre) +
0.01792 x wavelet. LLL _ glem _ MaximumProbability
(Pre).

The results of ROC and ACC of different models

AUCs of the three models in the training group is
0.884 (95%CI: 0.824-0.943), 0.852 (95%CI: 0.786-
0.919), and 0.874 (95%CI: 0.812-0.936) with ACCs of
82.0%, 78.4%, and 79.3%, respectively.

The AUCs of the three models in the test group is
0.765 (95%CI: 0.620-0.909), 0.797 (95%CI: 0.670-
0.924), and 0.784 (95%CI: 0.647-0.920) with ACCs of
68.6%, 78.4%, and 74.5%, respectively. More details
of these results are shown in (table 2).

Table 2. Performance of different models in training group
and test group.

Training * o P- o SEN | SPE
group AUC* (95%Cl ) value* ACC(%) (%) (%)
0.884 82.0
*
Modell® | g54.0.943) (95/116) | 23-1(804
0.852 78.4
*
Model2 (0.786-0.919 ) 0.338 (91/116) 87.7 | 68.6
0.874 79.3
*
Model3 (0.812-0.936 ) 0.156 (92/116) 84.5(78.4
P- SEN | SPE
0, 0,
Test group | AUC ( 95%Cl) value* ACC (%) (%)| (%)
0.765 68.6
*
Modell (0.620-0.909) (35/51) 74.2|75.0
0.797 78.4
*
Model2 (0.670-0.924 ) 0.652 (40/51) 83.9|70.1
0.784 74.5
*

Model3 (0.647-0.920) 0.280 (38/51) 67.7(80.1
P-value: The result of Delong test, Cl: Confidence interval,
pvalue<0.05, AUC: Area Under Curve, ACC: accuracy, SEN: Sensitivity,|
SPE: Specificity

Radiomics construction and
validation
On the basis of the radiomics score (rad.score) of

model 3, we combined the Clin-lab model to build the

nomogram


http://dx.doi.org/10.52547/ijrr.20.4.2
https://ijrr.com/article-1-4458-en.html

[ Downloaded from ijrr.com on 2026-02-03 ]

[ DOI: 10.52547ijrr.20.4.2 |

742 Int. J. Radiat. Res., Vol. 20 No. 4, October 2022

logistic regression model. The ORs of rad.score, age,
and CEA is 0.936 (95%CI: 0.488-1.384, P<0.001),
0.121 (95%CI: 0.046-0.197, P=0.0016), and 2.906
(95%CI:  0.789-5.023, P=0.0071) (table 3),
respectively. Then we drew the nomogram to better
distinguish LAC and GR (figure 5).

Table 3. Formulas and performance of the clin-lab model and
nomogram in the group set.

Model Formula AUC* [95%CI*|/ACC*|SEN* | SPE*
. 0.144age+2.396 0.689-
Clin-Lab CEA -8.550 0.806 0.924 0.706|0.613|0.950
0.936rad- 0.736-
Nomogram(score+0.121age+0.848 6961 0.804/0.839|0.750
2.906CEA-7.575 )

/AUC:area under the curve; Cl:Confidence interval; ACC:accuracy;
SEN:Sensitivity; SPE: Specificity; CEA: Carcinoembryonic antigen;
Clin-Lab: Clinical laboratory model

0O 10 20 30 40 50 60 70 80 90 10

P0|nt5 L 1 1 1 1 1 1 1 1 1 J
rad.score r T T T T T T T T T T T 1
S5 4 3 2 1 0 1 2 3 4 5 6 7
age T
25 35 45, 55 65 75 85
CEA —

0

Total Points e
0 20 40 60 80 100 120 140 160 180

risk

U.C;Oﬁ 0.650I2075 0180.950.99 0.999
Figure 5. Nomogram. Nomogram to distinguish lung
adenocarcinomas and granulomas based on model 4. A total
of three indicators were included in the study: rad-score,
age,CEA. First, the scores corresponding to score of model3
(rad-score), age, and CEA level were added to get the total
score, which was then used to obtain the corresponding risk
probability.

The AUC of the nomogram in the test group is
0.848 (95%CI: 0.736-0.961) with an ACC of 80.4%.
Results of the DeLong test showed that the difference
in ROC of model 3 and the nomogram in the test
group is not statistically significant (P=0.143).
Finally, calibration of the nomogram (figure 6) in the
training group and test group showed that the
nomogram could distinguish LAC and GR.

Comparisons of the different models

The AUC results showed that model 2, model 3,
and the nomogram were better than model 1, but
results of the Delong test indicated that the
differences in the ROCs of model 2, model 3 and the
nomogram were not significant in the test group
(P=0.652, 0.280, and 0.114, respectively) (figure 7).

The NRI results (table 4) in the test group also
showed that model 2 and model 3 were better than
model 1 but the differences were not significant
(P=0.148 and 0.083, respectively). However, the
difference between the nomogram (model4) and
model 1 in the test group was significant (P=0.029).
This showed that the nomogram may have better
discrimination ability than model 1. The decisive
curve (figure 8) also indicated that once the risk

threshold was greater than 0.3, the net benefit of the
nomogram was greater than model 1, model 2, and
model 3.
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Figure 6. Calibration curves. Calibration curve of the
nomogram in the training (green) and test (red) groups. The
solid gray line represents the best ideal situation, while the

green and red lines represent the predicted probabilities. The
X-axis represents the score calculated by the nomogram, while
the Y-axis represents the true value. The closer the two lines
were to each other, the better the predictive ability. The
results of the calibration curve show that nomogram has good
predictive ability.
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Table 4. Results of NRI in the test group.

ACC [Improvement|AUC* |[Improved AUC|P - value*

Model1(35/51| Reference [0.765

Model2|40/51 5 0.797 0.032 0.143
Model3(38/51 3 0.784 0.019 0.067
Model4|41/51 6 0.848 0.083 0.028*

IAUC: Area Under Curve; ACC: accuracy; NRI: Net Reclassification
Improvement; p - value < 0.05
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Figure 8. Decision curve analysis. Decision curve analysis

(DCA) of the four prediction models in the training groups. The

gray and black lines represent the hypotheses that all cases
are benign and malignant, respectively. The result of the curve

shows that the nomogram has better predictive ability than

model 1(red), model 2(green), and model 3(blue) when the

high-risk threshold (X-axis) is >0.3.

DISCUSSION

In this study, we compared the results of using three
different methods of delineating VOIs for the
differential diagnosis of LAC and GR and also
developed and validated a nomogram that included
serum tumor markers. This study showed that
radiomics features of the 5Smm peritumoral region
could enhance the predictive ability of a radiomics
model based on the tumor alone for distinguishing
LAC and GR. Finally, we attempted to construct a
better diagnostic model. In the test group, model 3
outperformed modell, which shows that features of
the 5-mm peritumoral region are helpful for the
radiomics model that was originally based on solitary
pulmonary tumor features to distinguish LAC and GR.
However, results of the DeLong test and NRI showed
that this difference was not statistically significant
(P>0.05), so the effect of the 5-mm peritumoral
region is limited. As a control group, model 2 also
outperformed model 1 with AUCs of 0.797 and 0.784
compared with 0.765 in the test group. Different
delineation methods produced these different results.

Apart from this, we also found that the radiomics
model had better differential diagnosis ability. In the
test group, the AUC values of the models based on the
radiomics features were 0.765, 0.797, and 0.784,
respectively. Our results of AUC are similar to those
of Chen et al. (25, who showed that the radiomics
model achieved an AUC value of 0.798 in
differentiating small granulomas and lung
adenocarcinomas (less than 10 mm); But our results

are smaller than that of Zhuo et al. (26), whose AUC
value is close to 1(AUC=0.99). This may be because
we are more stringent in the selection of features and
strive for reproducibility. Furthermore, our results
are similar to the study by Beig et al. (16) with the AUC
value of 0.76 in the test set.

As in previous study demonstrated (16), features
from 5-mm regions outside the tumor have the best
efficacy for distinguishing LAC and GR (compared
with different distances). This may be due to the
different cell morphology and arrangement of the
surrounding lymphocytes and macrophages at the
interface of the tumor or GR (16.26), These results are
somewhat similar to those of some studies, which
respectively confirmed that the peritumoral area is
helpful for differentiating the pathological type (16),
invasiveness (?7) and lymph node metastasis (13 of
lung cancer. However, we found that the
improvement effect of the surrounding area of the
tumor was not significant (P<0.05).Similarly, there
are also studies (17) showing that the peritumoral
region not helpful for the diagnosis of lung cancer.
Different research methods produce different
research results. In the future, further in-depth
research is necessary.

We also included serum tumor markers when
establishing the nomogram because they are
relatively objective indicators and are commonly
measured in clinical practice (28-39), We found that
CEA levels were generally elevated in patients with
LAC. This is a clinically meaningful indicator which
can also be used to predict the metastasis of lung
cancer. In the study by Wang et al. (15), the level of
CEA decreased in patients with lung adenocarcinoma
with lymph node metastasis comparing the cases
without lymph node metastasis.

Other serum tumor markers also have clinical
significance, the previous studies (1) have shown that
CA125 and CA153 levels are elevated in lung cancer
patients compared to the benign control group. Ren
et al. 23 have also found that compared with lung
adenocarcinoma, the levels of NSE and CYFRA21-1 in
lung squamous cell carcinoma are significantly
higher, so they can be used to assist diagnosis
different types of lung cancer. Consequently, as the
study of lung cancer, we strongly recommend the
addition of serum tumor markers because it is of
great significance for the diagnosis and prognosis of
lung cancer. In addition to this, the emergence and
development of radiomics has also accelerated the
individualization and precision of medical care (1. |
believe that it can give a good basis for clinicians'
diagnosis and treatment in the future.

There were several limitations to this study. First,
this was a single-center retrospectively study with a
small number of patients. All of the cases were from
our hospital, and almost all the cases were from the
northeast region of China. Our study may have
included selection bias, which may have led to
inadequate extrapolation of the model. Second, the


http://dx.doi.org/10.52547/ijrr.20.4.2
https://ijrr.com/article-1-4458-en.html

[ Downloaded from ijrr.com on 2026-02-03 ]

[ DOI: 10.52547ijrr.20.4.2 |

744 Int. J. Radiat. Res., Vol. 20 No. 4, October 2022

method we used to outline the regions of interest
were based on the semi-automatic protocol outlined
by our clinician (3z:33), Although we trained physicians
before the trial, there was still some observer bias.
Some features (32, 28, and 41) were deleted due to
insufficient consistency. Our research methods still
can be improved. Finally, owing to limitations in the
study methodology and the questionable consistency
of clinical classifications, we excluded many early and
advanced lung cancers because they manifested as
pure ground-glass nodules or had a large amount of
inflammation and fluid accumulation around them.
This narrows the scope of our research. A more
comprehensive study will be needed in the future to
further expand the field of radiomics (4.

CONCLUSION

In summary, we concluded that the features of
5-mm peritumoral regions improved the predictive
ability of the radiomics model based on the solid
pulmonary tumor, but the difference was not
significant.
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