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The significance of peritumoral 5mm regions features for 
radiomics model in distinguishing the lung adenocarcinomas 

and granulomas 

INTRODUCTION 

Lung cancer is one of the most common tumors 
and the leading cause of cancer-related death              
worldwide. Lung tumors are primarily divided into 
small cell lung cancer and non-small cell lung cancer, 
among which LAC is the most common pathological 
type (1-2). Currently, the primary method of detecting 
LAC is chest computed tomography (CT) (3). However, 
the imaging findings of CT (such as spiculation and 
lobulation) lack specificity, making it difficult to            
distinguish LAC from lung GR (4). The "gold standard" 
for diagnosing LAC is pathological biopsy, but this is 
an invasive examination and is not suitable for all 
patients (5-6). This problem not only causes a serious 
waste of medical resources worldwide but also            
increases the psychological burden of patients (7-8). 
Therefore, clinical practice urgently needs a non-
invasive and highly accurate method of distinguishing 
GR and LAC.  

Radiomics, was first proposed by Philippe Lambin 
in 2012 (9), and has been subsequently confirmed by 
many studies to play an important role in the           

diagnosis, treatment, and prognosis of lung cancer. 
The differential diagnosis ability of radiomics is             
superior to that of traditional clinical and medical 
imaging methods and it provides new ideas and           
directions for solving several clinical problems (10). 
Many studies have confirmed that radiomics features 
have advantages for distinguishing LAC and GR (11-12), 
and some of these features are linked to pathological 
results (13). Recently, several studies have also found 
that the lung interstitium surrounding the tumor has 
good diagnostic features, especially regarding the 
aggressiveness of early LAC (14) and the likelihood of 
lymph node metastasis (15). Beig et al. (16) also showed 
that the 5-mm peritumoral region has the strongest 
diagnostic features compared with other regions 
around the tumor for distinguishing LAC and GR. 

Aim and the novelty, we aimed to build a better 
radiomics diagnostic model that incorporates the              
5-mm peritumoral region to distinguish LAC and GR. 
To the best of our knowledge, few studies have               
investigated whether features of the 5-mm (16-17)  
peritumoral region can significantly improve the  
ability of the radiomics model using CT scans of the 
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ABSTRACT 

Background: To investigate whether features of 5-mm peritumoral regions could 
significantly improve the predictive efficacy of a radiomics model based on solid 
pulmonary tumors at distinguishing lung adenocarcinoma(LAC) from granuloma(GR). 
Materials and Methods: We retrospectively evaluated 167 lung tumors pathologically 
proven to be LAC (96) or GR (71) and divided them into training group (116) and 
testing (51) group. We delineated each tumor with three different measures using the 
tumor and its 5-mm peritumoral region. Then, we extracted 465 features from each 
volume of interest(VOI) and chose the optimal features to build the diagnostic models. 
We built four different models using different methods. Finally, we compared the 
performance of the four models in the test set. Results: The area under the curve
(AUC) of each model in the test group was 0.765 (95% confidence interval(CI): 0.620–
0.909), 0.797 (95%CI: 0.670–0.924), and 0.784 (95%CI: 0.647–0.920), respectively. 
Results of the DeLong test showed that the differences between model 2, model 3, 
and model 1 were not significant. Results of net reclassification improvement(NRI) 
showed that model 2 and model 3 had better differential diagnostic efficacy than 
model 1, with accuracies(ACCs) of 0.784, 0.745, and 0.686, respectively, but the 
differences were not significant (P>0.05). Moreover, the nomogram had good 
diagnostic and predictive abilities, with an AUC of 0.848 (95%CI: 0.736–0.961) and an 
ACC of 0.804. Conclusions: Features of 5-mm peritumoral regions improved the 
predictive ability of the radiomics model based on the solid pulmonary tumor, but the 
difference was not significant. 

►  Original article 

Keywords: lung adenocarcinomas,  
granulomas, radiomics, nomogram,              
machine learning.  

*Corresponding author: 
Lingling Sun, Ph.D., 
E-mail: 1403952319@qq.com  

Received: October 2021  

Final revised: February 2022 
Accepted: April 2022  

Int. J. Radiat. Res., October 2022;         
20(4): 737-745 

DOI: 10.52547/ijrr.20.4.2 

 [
 D

O
I:

 1
0.

52
54

7/
ijr

r.
20

.4
.2

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

rr
.c

om
 o

n 
20

26
-0

2-
03

 ]
 

                             1 / 10

http://dx.doi.org/10.52547/ijrr.20.4.2
https://ijrr.com/article-1-4458-en.html


solid pulmonary tumor to distinguish LAC and GR. 
This study aims to explore this question and it is also 
the innovation of our research. 

 
 

MATERIALS AND METHODS 
 

Patients 
We retrospectively analyzed the clinical data of 

167 patients with LAC or lung GR confirmed by            
pathology between June 2017 and December 2020. 
The inclusion criteria were as follows: (1) cases with 
clear pathological diagnostic results (LAC or GR) by 
surgical or pathological biopsy; (2) a CT scan was 
performed within 1 week before treatment or biopsy; 
(3) solid or part-solid tumor with clear borders; (4) 
good image quality without metal or motion artifacts; 
and (5) complete clinical and imaging information of 
the patient was available. The exclusion criteria were 
as follows: (1) disqualifying image quality, including 
lack of uniform layer thickness (not 1 mm) or            
different algorithms were used to reconstruct the 
image; (2) ground-glass nodules and multiple tumors 
in one section of the lung (confused with other           
tumors) (11-12); (3) large calcification or cavities and 
large fat components in the tumor; (4) tumors               
surrounded by excessive inflammation or atelectasis, 
or tumors stuck to the chest wall making it difficult to 
delineate the surrounding lung regions; and (5)             
incomplete clinical data. The inclusion and exclusion 
of patients are shown in figure 1. 

After applying the above inclusion and exclusion 
criteria, we included 167 cases. Among them, 96             
cases were LAC and 71 were GR (92 male and 75  
female patients; mean age: 59.16 ± 10.60 years). 
Then, all cases were randomly divided into a training 
group and test group at a ratio of 7:3. Finally, we          
collected the basic clinical information and serum 
tumor markers of patients (before treatment) 
through the hospital's records system, including              
age, location, family history, smoking history,                
Ferrtin,  Alpha-fetoprotein(AFP), Carcinoembryonic 
antigen(CEA), Carbohydrate antigen125(CA125),                       
Carbohydrate antigen153(CA153),Carbohydrate     
antigen(CA19-9), Neuron Specific Enolase(NSE), and 
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Cytokeratin 19 fragment antigen(CYFRA21-1). The 
thresholds of the different tumor markers were 291.0 
ng/mL (Ferrtin), 25 ng/mL (AFP), 5.0 ng/mL (CEA), 
30 U/mL (CA125), 32.4 U/mL (CA153), 37.0 U/mL 
(CA19-9), 16.3 ng/mL (NSE), and 3.3 ng/mL 
(CYFRA21-1). If the values were higher than the 
threshold, it was recorded as 1, otherwise, it was 0. 
The acquisition of the imaging data and related             
clinical data of the cases was approved by the                  
institutional ethics committee of our hospital (ethics 
approval number: 2020-122). 

 

Acquiring CT images  
We used a Siemens Somatom Sensa-Tion16 CT 

(Siemens Healthcare, Germany) or a GE LightSpeed 
VCT64 row spiral CT (GE Healthcare, USA) to collect 
CT images with the following flat sweep parameters: 
tube voltage, 120 kV; tube current, 100 or 150 mA; 
pitch, 1.15:1 or 1.375:1; layer thickness, 5 mm;                 
interval, 5 mm; rotation time, 0.5 or 0.8 s/turn; and 
enhanced scan parameters: tube voltage, 120 kV; 
tube current, 250 mA; pitch, 0.984:1; the whole lung 
was a 1.00-mm layer, and the rotation time was 0.8 s/
turn. The patient usually lay on their back with arms 
raised above the head. The scan range was from the 
tip of the lung to the bottom of the lung, and the scan 
was completed in a single held breath.  

 

Tumor segmentation and extracting radiomics 
features  

We imported all CT images into the open-source 
3D-Slicer software (www.3D-Slicer.com, version: 
4.10.2), and then two of our hospital’s imaging               
department doctors (with 7 and 14 years’ experience 
in chest imaging diagnosis) who were blinded to the 
pathological results independently analyzed and semi
-automatically delineated three different VOIs for 
each tumor on the transverse section in the CT             
plain-phase. VOI1: only tumors were delineated; 
VOI2: tumors and their 5-mm peritumoral regions 
were delineated (using the “margin function” in              
3D-slicer); VOI3: the 5-mm peritumoral regions alone 
(using the “hollow function” in 3D-slicer). In the            
process of delineating tumors, we tried to avoid non-
tumor components such as calcifications and cavities. 
When there was disagreement between the two              
doctors, the chief physician of our department made 
the final decision (18). To facilitate selecting features 
and evaluating their contribution to the                     
identification of LAC or GR, we standardized                 
(min-max normalization) the clinical data. The           
process of delineating the VOIs is shown in figure 2. 

A total of 465 features were extracted from every 
VOI using Pyradiomics (Python 3.7.1, version: 3.0.1) 
and normalized (Max-min normalization) the data we 
have obtained. 

 

Feature selection and building the radiomics         
models 

The  workflow  of this  study  is  shown in figure 3,  
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Figure 1. Patients’ selection. Schematic diagram of case            
selection process with exclusion criteria. 
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we compared the intraclass and interclass correlation 
coefficients (ICCs) between different features in the 
training set to eliminate unstable features. ICCs  
greater than 0.75 indicated good consistency and 
stability. We also used the Mann–Whitney U test 
(P<0.05) to eliminate redundant features that did not 
contribute to the differential diagnosis. 

 

Subsequently, the max-relevance and min-
redundancy (mRMR) were used to select the groups 
of features that had the greatest correlation to the 
result but the least correlation between the features. 
Many studies (19-21) have confirmed that this method 
can remove redundant features and improve the final 
model performance. From the mRMR analysis, we 
only selected top-ranked features. 

The least absolute shrinkage and selection               
operator (Lasso) applied to eliminate redundant            
features. Lasso regression (L1 regularization) can 
reduce the coefficients of unimportant features to 0, 
which avoids overfitting and multicollinearity of the 
model. We used 5-fold cross-validation to select the 
most optimal features to build multiple linear               
regression models. Features from VOI1 were used to 
build model 1, features from VOI2 were used to build 
model 2, and then we combined features from VOI1 
and VOI3 to build model 3. We used variance inflation 
factor (VIF) and heatmaps (22) to measure the                
multicollinearity of our models. In order to ensure 
the independence of the test set, all features selection 
and comparison are done in the training set. Finally, 
we evaluated their diagnostic capabilities in the         
independent test set. 

Nomogram construction and comparing the          
performances of the models 

The independent t-test (or Mann–Whitney U test) 
and Chi-square test were used to analyze clinical  
data, and model 3 incorporated the significant clinical 
information of the patients to develop the nomogram 
as model 4. We chose the calibration curve to               
measure the predictive effect of the nomogram (23). 
After that, we calculated the AUC of the receiver       
operating curve (ROC) and the ACC of each group of 
models in the training group and test group to            
calculate their 95% CI. 

Subsequently, we used the DeLong test (24) to  
compare whether there were statistically significant 
differences between the four different ROC curves in 
the test group. NRI was performed in the test set to 
evaluate whether model 2, model 3, or model 4 were 
better than model 1. Finally, we drew a decision 
curve (DCA) to observe the net benefit of the four 
models. 

 
Statistical analysis 

We used R studio (https:www.r-project.org,             
version: 4.0.5) for all statistical analyses and Prism 
(GraphPad Software, San Diego, CA, USA; version: 
8.0.2) to draw all graphics. All continuous variables 
are expressed as mean ± standard deviation (SD). If 
the data followed a normal distribution, we used the 
independent t-test to compare statistical differences, 
otherwise, the Mann–Whitney U test was used for 
data with non-normal distributions. For categorical 
variables, we used the Chi-square test or Fisher's  
exact test. We used Pearson's correlation coefficient 
and Kendal's correlation coefficient to measure the 
correlation between different data. Heatmaps were 
used for visualizations. VIF was used to estimate the 
multicollinearity of our models, and the VIF of every 
feature in the model less than 10 was considered not 
to have strong multicollinearity. P<0.05 of two-sided 
tests was regarded as a statistically significant           
difference. 

 
 

RESULTS 
 

Basic clinical information of the patients 
The pathological results of patients and the data 

regarding serum tumor markers are listed in table 1. 
Among the 167 cases there are 92 man and 75          
women patients (mean age of 59.16 ± 10.60 years 
old). There were 71 cases (training group: 51 and test 
group: 20) in the benign group, while 96 cases 
(training group: 65 and test group: 31) were in the 
malignant group. More information is listed in table 
1. 
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Figure 2. Three VOIs. Images show different measures of 
three VOIs. A: Only the tumor was delineated (VOI1). B: The 

tumor and surrounding 5-mm peritumoral region was            
delineated (VOI2). C: Only the 5-mm peritumoral region 

(VOI3). 

Figure 3. Workflow. Flow chart of our study, including lesion 
segmentation, feature extraction and selection, model               

construction, and validation of results. 
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Results of the independent t-test (or Mann–
Whitney U test) and Chi-square test showed that the 
age and CEA level were significantly different            
between the two groups (P=0.009 and P<0.001,             
respectively). The results of multiple logistic               
regression (clinical laboratory model;Clin-Lab) 
showed that the odds ratio(OR) of age and CEA were 
1.155 (95%CI: 1.092–1.236, P<0.001) ,10.984 (95%
CI: 2.409–83.781, P<0.001), respectively. The AUC of 
the Clin-Lab model is 0.806 (95%CI: 0.689–0.924) 
with an ACC of 0.706 in the test group. 

 

Results of feature selection 
In total, 32, 28, and 41 features of VOI1, VOI2, and 

VOI3, respectively, were eliminated due to their ICCs 
being less than 0.75. Subsequently, the Mann–
Whitney U test results showed that 180, 211, and 207 

features of VOI1, VOI2, and VOI3, respectively, were 
not significant in distinguishing LAC and GR. This left 
a total of 253, 226, 217 features of VOI1, VOI2, and 
VOI3, respectively. Then we selected the top 100             
features of mRMR and performed Lasso regression 
(L1 Regularization) with 5-fold cross-validation in the 
training group (figure 4). 

Ultimately, eight, nine, and five features of VOI1, 
VOI2, and VOI3, respectively, were screened out. 
Eight features from VOI1 were used to build model 1, 
nine features from VOI2 were used to build model 2, 
after that we combined the features from VOI1 and 
VOI3 to build model 3. We performed the Lasso        
operation due to some features from VOI1 and VOI3 
(pre) having strong correlations (figure A.1).               
Therefore, we ultimately chose nine features (seven 
from VOI1 and two from VOI3) to build model 3. The 
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Clinic 
characteristic 

Training group ( n = 116 )        Test group ( n = 51 ) 
LAC* GR* 

P - value 
LAC* GR* 

P - value 
( n = 65 ) ( n = 51 ) ( n =31 ) ( n =20 ) 

Age 52.84±9.49 63.94±8.39 0.000* 62.58±9.07 54.40±12.24 0.009* 
Gender     0.837     0.493 
     Male 37 ( 56.92 ) 30 ( 58.82 )   14 ( 45.16 ) 11 ( 55.00 )   

     Female 28 ( 43.08 ) 21 ( 41.18 )   17 (54.84 ) 9 ( 45.00 )   
Family History     0.07     0.633 

     Absent 56 ( 86.15 ) 49 ( 96.08 )   23 ( 74.19 ) 16 ( 80.00 )   
     Present 9 ( 13.85 ) 2 ( 3.92 )   8 ( 25.81 ) 4 ( 20.00 )   

Smoking History     0.491     0.685 
     Absent 46 ( 90.20 ) 39 ( 76.47 )   20 ( 64.52 ) 14 ( 70.00 )   
     Present 19 ( 29.23 ) 12 ( 23.53 )   11 ( 35.48 ) 6 ( 30.00 )   
Location     0.286     0.09 

     R upper* 26 ( 0.40 ) 22 ( 43.14 )   11 ( 35.48 ) 11 ( 55.00 )   
     R middle* 5 ( 7.69 ) 1 ( 1.96 )   5 ( 16.13 ) 1 ( 5.00 )   
     R lower* 15 ( 23.08 ) 8 ( 15.69 )   1 ( 3.23 ) 4 ( 20.00 )   
     L upper* 14 ( 21.54 ) 11 ( 21.56 )   10 ( 32.26 ) 3 ( 15.00 )   
     L lower* 5 ( 7.69 ) 9 ( 17.65 )   4 ( 12.90 ) 1 ( 5.00 )   

Ferrtin*(<291 ng/mL)     0.466     0.316 
     Normal 61 ( 93.85 ) 46 ( 90.20 )   29 ( 93.55 ) 17 ( 85.00 )   

     Abnormal 4 ( 6.15 ) 5 ( 9.80 )   2 ( 6.45 ) 3 ( 15.00 )   
AFP* (<25ng/mL)     0.707     1.000 

     Normal 63 ( 96.92 ) 50 ( 98.04 )   31 ( 100.00 ) 20 ( 100.00 )   
     Abnormal 2 ( 3.08 ) 1 ( 1.96 )   0 ( 0.00 ) 0 ( 0.00 )   

CEA* (<5ng/mL)     0.000*     0.005 
     Normal 44 ( 67.69 ) 49 ( 96.08 )   21 ( 67.74 ) 20 ( 100.00 )   

     Abnormal 31 ( 32.31 ) 2 ( 3.92 )   10 ( 32.26 ) 0 ( 0.00 )   
CA125* (<30.0U/mL )     0.703     0.315 

     Normal 60 ( 92.31 ) 48 ( 94.12 )   30 ( 96.77 ) 18 ( 90.00 )   
     Abnormal 5 ( 7.69 ) 3 ( 5.88 )   1 ( 3.23 ) 2 ( 10.00 )   

CA153* (<32.4U/mL)     0.374     0.417 
     Normal 64 ( 98.46 ) 51 ( 100 )   30 ( 96.77 ) 20 ( 100.00 )   

     Abnormal  1 ( 1.54 ) 0 ( 0 )   1 ( 3.23 ) 0 ( 0.00 )   
CA19-9*(< 37.0U/mL)     0.976     0.094 

     Normal 60 ( 92.31 ) 47 ( 92.16 )   27 ( 87.10 ) 20 ( 100.00 )   
     Abnormal 5 ( 7.69 ) 4 ( 7.84 )   4 ( 12.90 ) 0 ( 0.00 )   

NSE* (<16.3ng/mL)     0.424     0.427 
     Normal 29 ( 44.62 ) 19 ( 37.26 )   12 ( 38.71 ) 10 ( 50.00 )   

     Abnormal 36 ( 55.38 ) 32 ( 62.74 )   19 ( 61.29 ) 10 ( 50.00 )   
CYFRA21-1*(<3.3ng/mL)     0.748     0.370 

      Normal 52 ( 0.80 ) 42 ( 82.35 )   25 ( 80.65 ) 18 ( 90.00 )   
      Abnormal 13 ( 0.20 ) 9 ( 17.65 )   6 ( 19.35 ) 2 ( 10.00 )   

R upper: Right upper lobe; R middle: Right middle lobe; R lower: Right lower lobe; L upper: Left upper lobe; L lower: Lower lobe of left lung; 
LAC: Lung adenocarcinoma; GR: Granuloma; AFP: Alpha-fetoprotein; CEA: Carcinoembryonic antigen; CA125: Carbohydrate antigen125; 
CA153: Carbohydrate antigen153; CA19-9: Carbohydrate antigen19-9; NSE: Neuron specific enlase; CYFRA21-1: Cytokeratin 19 fragment 
antigen; p value < 0.05. 

Table 1. Baseline characteristics of patients in training group and test group.  
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VIF values of all models were less than 10. The      
coefficients and features of the models are listed in 
(table A.1) and were used to calculate the radiomics 
score. 

 
Mode-1: 0.6324 + 1.2920 × wavelet. HHL _ glcm _ 
DifferenceVariance - 0.8290 × wavelet. HHL _ glrlm _ 
ShortRunHighGrayLevelEmphasis - 1.4727 × wavelet. 
HLL _ glcm _ Correlation - 1.0684 × wavelet. HLH _ 
glcm _ MCC + 0.55631 × wavelet. LLL _ glcm _ Correla-
tion + 0.34572 × original _ glcm _ ClusterProminence 
+ 1.28243 × wavelet. LHH _ glrlm _ GrayLevelNonUni-
formity-0.46432 × wavelet. LHL _ glrlm _ LongRun  

LowGrayLevelEmphasis. 
 

Model-2: 0.4056 - 2.8414 × log.sigma.3.0.mm.3D _ 
glcm _ Autocorrelation + 0.57284×wavelet. LLH _ 
glrlm _ GrayLevelNonUniformity - 0.07003 × wavelet. 
LHL _ glrlm _ LongRunLowGrayLevelEmphasis + 
0.01920 × wavelet. LHL _ glcm _ Idmn + 0.72341 × 
log.sigma.3.0.mm.3D _ glcm _Imc1 - 0.78388 × 
log.sigma.1.0.mm.3D _ glcm _ MCC + 0.58241 × wave-
let. LHH _ glrlm _ GrayLevelNonUniformity + 0.74316 
× wavelet. HHL _ glrlm _ ShortRunHighGrayLevelEm-
phasis - 0.02061 × log.sigma.3.0.mm.3D _ glcm _ Clus-
terProminence. 

 
Model-3: 0.6365 + 1.02961 × wavelet. HHL _ glcm 
_ DifferenceVariance - 1.25279 × wavelet. HLL _ glcm 
_ Correlation - 0.94404 × wavelet. HLH _ glcm _ MCC - 
0.58965 × wavelet. LLL _ glcm _ Correlation + 
0.21258 × original _ glcm _ ClusterProminence + 
0.96581 × wavelet. LHH _ glrlm _ GrayLevelNonUni-
formity - 0.46123 × wavelet. LHL _ glrlm _ LongRun-
LowGrayLevelEmphasis - 0.30427 × wavelet. HHL _ 
glrlm _ ShortRunHighGrayLevelEmphasis (Pre) + 
0.01792 × wavelet. LLL _ glcm _ MaximumProbability
(Pre). 

 
The results of ROC and ACC of different models 

AUCs of the three models in the training group is 
0.884 (95%CI: 0.824–0.943), 0.852 (95%CI: 0.786–
0.919), and 0.874 (95%CI: 0.812–0.936) with ACCs of 
82.0%, 78.4%, and 79.3%, respectively.  

The AUCs of the three models in the test group is 
0.765 (95%CI: 0.620–0.909), 0.797 (95%CI: 0.670–
0.924), and 0.784 (95%CI: 0.647–0.920) with ACCs of 
68.6%, 78.4%, and 74.5%, respectively. More details 
of these results are shown in (table 2). 

 

Radiomics nomogram construction and                 
validation 

On the basis of the radiomics score (rad.score) of 
model 3, we combined the Clin-lab model to build the 
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Figure 4. Lasso. Lasso regression results with 5-fold cross 
validation. The X-axis shows the log (Penalty coefficient λ), and 
the Y-axis shows the misclassification rate. A total of eight of 
VOI1 (A), nine of VOI2 (B), five of VOI3 (C), and nine of VOI1 
and VOI3 (D) non-zero coefficient features were selected to 

build the prediction models. 

Training 
group 

AUC* ( 95%CI ) 
P - 

 value* 
ACC ( % ) 

SEN 
( % ) 

SPE 
( % ) 

Model1* 
0.884 

( 0.824-0.943 ) 
 

82.0 
( 95/116) 

83.1 80.4 

Model2* 
0.852 

( 0.786-0.919 ) 
0.338 

78.4 
( 91/116 ) 

87.7 68.6 

Model3* 
0.874 

( 0.812-0.936 ) 
0.156 

79.3 
( 92/116 ) 

84.5 78.4 

Test group AUC ( 95%CI ) 
P - 

value* 
ACC ( % ) 

SEN
( % ) 

SPE 
( % ) 

Model1* 
0.765 

( 0.620-0.909 ) 
 

68.6 
( 35/51 ) 

74.2 75.0 

Model2* 
0.797 

( 0.670-0.924 ) 
0.652 

78.4 
( 40/51 ) 

83.9 70.1 

Model3* 
0.784 

( 0.647-0.920 ) 
0.280 

74.5 
( 38/51 ) 

67.7 80.1 

P-value: The result of Delong test, CI: Confidence interval, 
pvalue<0.05, AUC: Area Under Curve,  ACC: accuracy, SEN: Sensitivity, 
SPE: Specificity 

Table 2. Performance of different models in training group 
and test group. 
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logistic regression model. The ORs of rad.score, age, 
and CEA is 0.936 (95%CI: 0.488–1.384, P<0.001), 
0.121 (95%CI: 0.046–0.197, P=0.0016), and 2.906 
(95%CI: 0.789–5.023, P=0.0071) (table 3),                        
respectively. Then we drew the nomogram to better 
distinguish LAC and GR (figure 5).  

The AUC of the nomogram in the test group is 
0.848 (95%CI: 0.736–0.961) with an ACC of 80.4%. 
Results of the DeLong test showed that the difference 
in ROC of model 3 and the nomogram in the test 
group is not statistically significant (P=0.143).              
Finally, calibration of the nomogram (figure 6) in the 
training group and test group showed that the            
nomogram could distinguish LAC and GR. 

 

Comparisons of the different models 
The AUC results showed that model 2, model 3, 

and the nomogram were better than model 1, but 
results of the Delong test indicated that the                 
differences in the ROCs of model 2, model 3 and the 
nomogram were not significant in the test group 
(P=0.652, 0.280, and 0.114, respectively) (figure 7). 

The NRI results (table 4) in the test group also 
showed that model 2 and model 3 were better than 
model 1 but the differences were not significant 
(P=0.148 and 0.083, respectively). However, the            
difference between the nomogram (model4) and 
model 1 in the test group was significant (P=0.029). 
This showed that the nomogram may have better 
discrimination ability than model 1. The decisive 
curve (figure 8) also indicated that once the risk 

threshold was greater than 0.3, the net benefit of the 
nomogram was greater than model 1, model 2, and 
model 3. 
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Model Formula AUC* 95%CI* ACC* SEN* SPE* 

Clin-Lab 
0.144age+2.396

CEA -8.550 
0.806 

0.689-
0.924 

0.706 0.613 0.950 

Nomogram 
0.936rad-

score+0.121age+ 
2.906CEA-7.575 

0.848 
0.736-
0.961 

0.804 0.839 0.750 

AUC:area under the curve; CI:Confidence interval; ACC:accuracy; 
SEN:Sensitivity; SPE: Specificity; CEA: Carcinoembryonic antigen;            
Clin-Lab: Clinical laboratory model 

Table 3. Formulas and performance of the clin-lab model and 
nomogram in the group set. 

Figure 6. Calibration curves. Calibration curve of the               
nomogram in the training (green) and test (red) groups. The 
solid gray line represents the best ideal situation, while the 

green and red lines represent the predicted probabilities. The 
X-axis represents the score calculated by the nomogram, while 

the Y-axis represents the true value. The closer the two lines 
were to each other, the better the predictive ability. The          

results of the calibration curve show that nomogram has good 
predictive ability. 

Figure 5. Nomogram. Nomogram to distinguish lung                  
adenocarcinomas and granulomas based on model 4. A total 

of three indicators were included in the study: rad-score, 
age,CEA. First, the scores corresponding to score of model3 
(rad-score), age, and CEA level were added to get the total 

score, which was then used to obtain the corresponding risk 
probability. 

Figure 7. ROC curves. Receiver operating characteristic (ROC) 
curves of the training and test groups with the respective area 

under the curve (AUC) values for each group of models at 
distinguishing lung adenocarcinoma and granuloma. 
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DISCUSSION 
 

In this study, we compared the results of using three 
different methods of delineating VOIs for the                
differential diagnosis of LAC and GR and also                   
developed and validated a nomogram that included 
serum tumor markers. This study showed that               
radiomics features of the 5mm peritumoral region 
could enhance the predictive ability of a radiomics 
model based on the tumor alone for distinguishing 
LAC and GR. Finally, we attempted to construct a  
better diagnostic model. In the test group, model 3 
outperformed model1, which shows that features of 
the 5-mm peritumoral region are helpful for the              
radiomics model that was originally based on solitary 
pulmonary tumor features to distinguish LAC and GR. 
However, results of the DeLong test and NRI showed 
that this difference was not statistically significant 
(P>0.05), so the effect of the 5-mm peritumoral            
region is limited. As a control group, model 2 also 
outperformed model 1 with AUCs of 0.797 and 0.784 
compared with 0.765 in the test group. Different            
delineation methods produced these different results.  

Apart from this, we also found that the radiomics 
model had better differential diagnosis ability. In the 
test group, the AUC values of the models based on the 
radiomics features were 0.765, 0.797, and 0.784,          
respectively. Our results of AUC are similar to those 
of Chen et al. (25), who showed that the radiomics 
model achieved an AUC value of 0.798 in                         
differentiating small granulomas and lung                 
adenocarcinomas (less than 10 mm); But our results 

are smaller than that of Zhuo et al. (26), whose AUC 
value is close to 1(AUC=0.99). This may be because 
we are more stringent in the selection of features and 
strive for reproducibility. Furthermore, our results 
are similar to the study by Beig et al. (16) with the AUC 
value of 0.76 in the test set. 

As in previous study demonstrated (16), features 
from 5-mm regions outside the tumor have the best 
efficacy for distinguishing LAC and GR (compared 
with different distances). This may be due to the               
different cell morphology and arrangement of the 
surrounding lymphocytes and macrophages at the 
interface of the tumor or GR (16, 26). These results are 
somewhat similar to those of some studies, which 
respectively confirmed that the peritumoral area is 
helpful for differentiating the pathological type (16), 
invasiveness (27) and lymph node metastasis (15) of 
lung cancer. However, we found that the                       
improvement effect of the surrounding area of the 
tumor was not significant (P<0.05).Similarly, there 
are also studies (17) showing that the peritumoral   
region not helpful for the diagnosis of lung cancer. 
Different research methods produce different               
research results. In the future, further in-depth            
research is necessary. 

We also included serum tumor markers when  
establishing the nomogram because they are                 
relatively objective indicators and are commonly 
measured in clinical practice (28-30). We found that 
CEA levels were generally elevated in patients with 
LAC. This is a clinically meaningful indicator which 
can also be used to predict the metastasis of lung  
cancer. In the study by Wang et al. (15), the level of 
CEA decreased in patients with lung adenocarcinoma 
with lymph node metastasis comparing the cases 
without lymph node metastasis.  

Other serum tumor markers also have clinical 
significance, the previous studies (11) have shown that 
CA125 and CA153 levels are elevated in lung cancer 
patients compared to the benign control group. Ren 
et al. (23) have also found that compared with lung 
adenocarcinoma, the levels of NSE and CYFRA21-1 in 
lung squamous cell carcinoma are significantly              
higher, so they can be used to assist diagnosis                 
different types of lung cancer. Consequently, as the 
study of lung cancer, we strongly recommend the 
addition of serum tumor markers because it is of 
great significance for the diagnosis and prognosis of 
lung cancer. In addition to this, the emergence and 
development of radiomics has also accelerated the 
individualization and precision of medical care (31). I 
believe that it can give a good basis for clinicians'  
diagnosis and treatment in the future. 

There were several limitations to this study. First, 
this was a single-center retrospectively study with a 
small number of patients. All of the cases were from 
our hospital, and almost all the cases were from the 
northeast region of China. Our study may have           
included selection bias, which may have led to            
inadequate extrapolation of the model. Second, the 
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  ACC Improvement AUC* Improved AUC P - value* 

Model1 35/51 Reference 0.765     

Model2 40/51 5 0.797 0.032 0.143 

Model3 38/51 3 0.784 0.019 0.067 

Model4 41/51 6 0.848 0.083 0.028* 

AUC: Area Under Curve; ACC: accuracy; NRI: Net Reclassification  
Improvement; p - value < 0.05 

 Table 4. Results of NRI in the test group. 

Figure 8. Decision curve analysis. Decision curve analysis 
(DCA) of the four prediction models in the training groups. The 

gray and black lines represent the hypotheses that all cases 
are benign and malignant, respectively. The result of the curve 

shows that the nomogram has better predictive ability than 
model 1(red), model 2(green), and model 3(blue) when the 

high-risk threshold (X-axis) is >0.3. 
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method we used to outline the regions of interest 
were based on the semi-automatic protocol outlined 
by our clinician (32-33). Although we trained physicians 
before the trial, there was still some observer bias. 
Some features (32, 28, and 41) were deleted due to 
insufficient consistency. Our research methods still 
can be improved. Finally, owing to limitations in the 
study methodology and the questionable consistency 
of clinical classifications, we excluded many early and 
advanced lung cancers because they manifested as 
pure ground-glass nodules or had a large amount of 
inflammation and fluid accumulation around them. 
This narrows the scope of our research. A more              
comprehensive study will be needed in the future to 
further expand the field of radiomics (34). 

 
 

CONCLUSION 
 

In summary, we concluded that the features of         
5-mm peritumoral regions improved the predictive 
ability of the radiomics model based on the solid  
pulmonary tumor, but the difference was not             
significant. 
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