:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 753-760 Back to browse issues page
Evaluation of cognitive functions and EEG records in rats exposed to 2.45 GHz electromagnetic field
H. Yucel , N.O. Dundar , D.K. Doguc , C. Uguz , O. Celik , F. Tutku Aksoy , M. Nazıroglu , S. Comlekci , B. Dundar
Izmir Katip Çelebi University, Pediatric Neurology, Izmir, Turkey
Abstract:   (964 Views)
Background: Electromagnetic fields may primarily affect cognitive functions. It has not been elucidated how electromagnetic radiation affects the brain, particularly in the young age group. We aimed to examine the cognitive function, expression of N-methyl-D-aspartate receptors (NMDA), and EEG alterations in weaned rats exposed to a 2.45 GHz electromagnetic field. Materials and Methods: Twenty-one weaned (21 days old) male Wistar Albino rats were divided into two groups as experimental group (n=12) and control group (n=9). Animals in the experimental group were exposed to a 2.45 GHz electromagnetic field for one hour a day for more than 28 days. At the end of this period, rats were subjected to training and learning test using Morris Water Maze. After obtaining EEG records, hippocampi were removed. 2A and 2B subunits of NMDA receptors were studied in hippocampal homogenates using the Western Blot method. Results: There were no statistically significant differences between the two groups in measures of latency to target quadrant, time spent in the target quadrant, and average swim speed as compared in Morris water maze. However, the time to arrive at the visible platform was significantly longer in experimental animals. There were no statistically significant differences in expression of 2A and 2B subunits of NMDA receptors between the two groups. Evaluation of EEG records revealed that spike frequency was significantly higher and time to first spike was significantly shorter in the experimental group. Conclusion: These results indicated that a 2.45 GHz electromagnetic field might negatively affect EEG, motivation, and attention, particularly in the young age group.
Keywords: EEG, electromagnetic field, NMDA, Water Maze memory test, weaned rat.
Full-Text [PDF 1765 kb]   (1750 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Şeker S and Çerezci O (1991) Elektromanyetik Alanların Biyolojik Etkileri Güvenlik Standartları ve Korunma Yöntemleri. İstanbul Boğaziçi Üniversitesi Yayınları. p. 95-127.
2. Exposure to high-frequency electromagnetic fields, biological effects, and health consequences (100 kHz-300 GHz) (2009) Review of the Scientific Evidence and Health Consequences. Munich: International Commission on Non-Ionizing Radiation Protection. ISBN 978-3-934994-10-2. http://www.icnirp.de/PubMost.htm. Access date: 31.05.2011.
3. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. 4th ed, New York: McGraw-Hill, Health Professions Division.
4. Tucker DM, Hartry-Speiser A, McDougal L, Luu P, deGrandpre D (1999) Mood, and spatial memory: emotion and right hemisphere contribution to spatial cognition. Biol Psychol, 50: 103-125. [DOI:10.1016/S0301-0511(99)00005-8] [PMID]
5. Liang KC, Hon W, Tyan YM, Liao WL (1994) Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation, and retrieval of spatial memory in the Morris water maze. Chin J Physiol, 37: 201-212.
6. Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Seze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis, 17: 445-454. [DOI:10.1016/j.nbd.2004.07.004] [PMID]
7. Peyman A, Rezazadeh AA, Gabriel C (2001) Changes in the dielectric properties at rat tissue as a function of age at microwave frequencies. Phys Med Biol, 46: 1617-1629. [DOI:10.1088/0031-9155/46/6/303] [PMID]
8. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods, 11: 47-60. [DOI:10.1016/0165-0270(84)90007-4] [PMID]
9. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem, 193: 265-275. [DOI:10.1016/S0021-9258(19)52451-6] [PMID]
10. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685. [DOI:10.1038/227680a0] [PMID]
11. Delibas N, Doguc DK, Sutcu R, Eroglu E, Gokalp O (2005) Effect of nicotine on hippocampal nicotinic acetylcholine alpha7 receptor and NMDA receptor subunits 2A and 2B expression in young and old rats. Int J Neurosci, 115: 1151-1163. [DOI:10.1080/00207450590914437] [PMID]
12. Liu LO, Laabich A, Hardison A, Cooper NG (2001) Expression of ionotropic glutamate receptors in the retina of the rdta transgenic mouse. BMC Neurosci, 2: 7. [DOI:10.1186/1471-2202-2-7] [PMID] []
13. Finnie JW, Blumbergs PC, Cai Z, Manavis J, Kuchel TR (2006) Effect of mobile telephony on blood-brain barrier permeability in the fetal mouse brain. Pathology, 38: 63-65. https://doi.org/10.1080/00313020600699284 [DOI:10.1080/00313020500459607]
14. Zhao X, Dong G, Wang C (2021) The non-thermal biological effects and mechanisms of microwave exposure. Int J Radiat Res, 19: 483-494. [DOI:10.52547/ijrr.19.3.483]
15. Vorobyov V, Janac B, Pesic V, Prolic Z (2010) Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study. Int J Radiat Biol, 86: 376-383. [DOI:10.3109/09553000903567938] [PMID]
16. Petrova EV, Guliaeva NV, Titarov SI, Rozhnov Iu V, Koval'zon VM (2003) Effect of impulse extrabroad-band electromagnetic radiation on electroencephalogram and sleep in laboratory animals. Ross Fiziol Zh Im I M Sechenova, 89: 786-794.
17. Thuroczy G, Kubinyi G, Bodo M, Bakos J, Szabo LD (1994) Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health, 10: 135-148. [DOI:10.1515/REVEH.1994.10.2.135] [PMID]
18. Naziroglu M, Gumral N (2009) Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol, 85: 680-689. [DOI:10.1080/09553000903009530] [PMID]
19. Kramarenko AV and Tan U (2003) Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci, 113: 1007-1019. [DOI:10.1080/00207450390220330] [PMID]
20. D'Costa H, Trueman G, Tang L, et al. (2003) Human brain wave activity during exposure to radiofrequency field emissions from mobile phones. Australas Phys Eng Sci Med, 26: 162-167. [DOI:10.1007/BF03179176] [PMID]
21. Trunk A, Stefanics G, Zentai N, Kovacs-Balint Z, Thuroczy G, Hernadi I (2013) No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics, 34: 31-42. [DOI:10.1002/bem.21740] [PMID]
22. Wang B and Lai H (2000) Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics, 21: 52-56. https://doi.org/10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6 [DOI:10.1002/(SICI)1521-186X(200001)21:13.0.CO;2-6]
23. Shahi A, Shahnazar F, Nematolahi S, Dehghan A, Shojaeifard MB (2021) Does exposure to radiation emitted from mobile jammers influence the spatial memory? Int J Radiat Res, 19(4): 993-1000. [DOI:10.52547/ijrr.19.4.28]
24. Barth A, Winker R, Ponocny-Seliger E, et al. (2008) A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. Occup Environ Med, 65: 342-346. [DOI:10.1136/oem.2006.031450] [PMID]
25. Barth A, Ponocny I, Gnambs T, Winker R (2012) No effects of short-term exposure to mobile phone electromagnetic fields on human cognitive performance: a meta-analysis. Bioelectromagnetics, 33: 159-165. [DOI:10.1002/bem.20697] [PMID]
26. Sauter C, Dorn H, Bahr A, et al. (2011) Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects. Bioelectromagnetics, 32: 179-190. [DOI:10.1002/bem.20623] [PMID]
27. Bouji M, Lecomte A, Hode Y, de Seze R, Villegier AS (2012) Effects of 900 MHz radiofrequency on corticosterone, emotional memory, and neuroinflammation in middle-aged rats. Exp Gerontol, 47: 444-451. [DOI:10.1016/j.exger.2012.03.015] [PMID]
28. Li YH, Lu GB, Shi CH, Zhang Z, Xu Q (2011) Effects of 2000 muW/cm2; electromagnetic radiation on expression of immunoreactive protein and mRNA of NMDA receptor 2A subunit in rats hippocampus. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 27: 15-18.
29. Sinha RK (2008) Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol, 84(6): 505-513. [DOI:10.1080/09553000802085441] [PMID]
30. Mitchell CL, McRee DI, Peterson NJ, Tilson HA (1988) Some behavioral effects of short-term exposure of rats to 2.45 GHz microwave radiation. Bioelectromagnetics, 9(3): 259-268. [DOI:10.1002/bem.2250090307] [PMID]
31. Contestabile A (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Rev, 32: 476-509. [DOI:10.1016/S0165-0173(00)00018-7] [PMID]
32. Huang CT, Liu P, Wu HX, Wang JL, Wu XN (2006) Effects of NMDA receptor expression in rat's hippocampus after exposure to 1800 MHz radiofrequency field. Zhonghua Yu Fang Yi Xue Za Zhi, 40: 21-24.
33. Zhang Y, Yu Z, Xie Y, Fang Q (2008) Effects of microwave irradiation on NMDA receptor subunits mRNA expressions in rat hippocampus. Wei Sheng Yan Jiu, 37: 25-28.



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page