:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 793-798 Back to browse issues page
Intratumoral injection of radioactive Astatine (211At) microspheres for the treatment of tumors
Y. Li , F. Pang , H. Cai , L. Li
Department of Nuclear Medicine, West China Hospital of Sichuan University, China , tsflyh@126.com
Abstract:   (641 Views)
Background: Our aims were to prepare microspheres labelled with radioactive astatine as brachytherapy seeds and to confirm the antitumor ability of these microspheres. Materials and Methods: Chitosan-collagen composite microspheres (CCMs) were synthesized through an emulsification crosslink reaction and radiolabelled with 211At using the chloramine-T method. Radiation stability was assessed in both phosphate-buffered saline and blood serum. The in vivo distribution and therapeutic effects were evaluated in BALB/c nude mice with implanted tumours. Results: CCMs showed ideal morphological characteristics (diameter of 7.5-15 μm) and acceptable radiation stability (73.99% in PBS and 72.56% in serum after 16 hours). The in vivo biodistribution analysis demonstrated that 211At-CCMs were highly localized in tumour tissue. The therapeutic efficacy of 211At-CCMs when intratumorally injected into a cervical tumour model was assessed. Fourteen days after a single-dose treatment with 211At-CCMs, significantly retarded tumour volume growth was observed. Conclusion: 211At-CCM brachytherapy has the potential to provide an alternative solution for tumour treatment.
 
 
Keywords: Brachytherapy, microspheres, radiation oncology, Astatine-211.
Full-Text [PDF 2322 kb]   (428 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Wang JTW, Klippstein R, Martincic M, Pach E, Feldman R, Sefl M, Michel Y, Asker D, et al. (2020) Neutron activated Sm-153 sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. Acs Nano, 14(1): 129-141. [DOI:10.1021/acsnano.9b04898] [PMID]
2. Moeendarbari S, Tekade R, Mulgaonkar A, Christensen P, Ramezani S, Hassan G, Jiang R, Oez OK, Hao Y, Sun X (2016) Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci Rep, 6: 20614. [DOI:10.1038/srep20614] [PMID] []
3. Otter SJ, Stewart AJ, Devlin PM (2019) Modern brachytherapy. Hematol Oncol Clin N, 33(6): 1011. [DOI:10.1016/j.hoc.2019.08.011] [PMID]
4. Hannoun-Levi JM (2017) Brachytherapy for prostate cancer: Present and future. Cancer Radiother, 21(6-7): 469-472. [DOI:10.1016/j.canrad.2017.06.009] [PMID]
5. Zaorsky NG, Davis BJ, Nguyen PL, Showalter TN, Hoskin PJ, Yoshioka Y, Morton GC, Horwitz EM (2017) The evolution of brachy therapy for prostate cancer. Nat Rev Urol, 14(7): 415-439. [DOI:10.1038/nrurol.2017.76] [PMID] []
6. Bensaleh S, Bezak E, Borg M (2009) Review of MammoSite brachytherapy: Advantages, disadvantages and clinical outcomes. Acta Oncol, 48(4): 487-494. [DOI:10.1080/02841860802537916] [PMID]
7. McLaughlin PW and Narayana V (2020) Progress in Low Dose Rate Brachytherapy for Prostate Cancer. Semin Radiat Oncol, 30(1): 39-48. [DOI:10.1016/j.semradonc.2019.08.002] [PMID]
8. Peschel RE, Colberg JW, Chen Z, Nath R, Wilson LD (2004) Iodine 125 versus palladium 103 implants for prostate cancer: Clinical outcomes and complications. Cancer J, 10(3): 170-174. [DOI:10.1097/00130404-200405000-00006] [PMID]
9. Wu S, Helal-Neto E, Matos, APDS Jafari A, Kozempel J, Silva YJDA, Serrano-Larrea C, et al. (2020) Radioactive polymeric nanoparticles for biomedical application. Drug Deliv, 27(1): 1544-1561. [DOI:10.1080/10717544.2020.1837296] [PMID] []
10. Laprise-Pelletier M, Simao T, Fortin M (2020) Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv Healthc Mater, 7(16): e1701460. [DOI:10.1002/adhm.201701460] [PMID]
11. Salvanou E, Stellas D, Tsoukalas C, Mavroidi B, Paravatou-Petsotas M, Kalogeropoulos N, et al. (2020) A proof-of-concept study on the therapeutic potential of Au nanoparticles radiolabeled with the alpha-emitter Actinium-225. Pharmaceutics, 12(2): 188. [DOI:10.3390/pharmaceutics12020188] [PMID] []
12. Lee EJ, Chung HW, Jo JH, So Y (2019) Radioembolization for the treatment of primary and metastatic liver cancers. Nucl Med Mol Imaging, 53(6): 367-373. [DOI:10.1007/s13139-019-00615-9] [PMID] []
13. van Nimwegen SA, Bakker RC, Kirpensteijn J, van Es RJJ, Koole R, Lam MGEH, et al. (2018) Intratumoral injection of radioactive holmium (Ho-166) microspheres for treatment of oral squamous cell carcinoma in cats. Vet Comp Oncol, 16(1): 114-124. [DOI:10.1111/vco.12319] [PMID]
14. Vaidyanathan G and Zalutsky MR (2008) Astatine radiopharmaceuticals: Prospects and problems. Curr Radiopharm, 1(3): 177-177. [DOI:10.2174/1874471010801030177] [PMID] []
15. Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, Morgenstern A, Sgouros G (2009) Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res, 69(23): 8941-8948. [DOI:10.1158/0008-5472.CAN-09-1828] [PMID] []
16. Ha H, Kwon H, Lim T, Jang J, Park SK (2021) Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer - a review of patent literature. Expert Opin Ther Pat, 31(6): 525-547. [DOI:10.1080/13543776.2021.1878145] [PMID]
17. Kato H, Huang X, Kadonaga Y, Katayama D, Ooe K, Shimoyama A, Kabayama K, et al. (2021) Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy. J Nanobiotechnology, 19(1): 223. https://doi.org/10.21203/rs.3.rs-430857/v1 [DOI:10.1186/s12951-021-00963-9]
18. Pang F, Li Y, Zhang W, Xia C, He Q, Li Z, Xiao L, Song S, Dong P, Zhou H, Shao T, Cai H, Li L (2020) Biodegradable (131) Iodine-labeled microspheres: potential transarterial radioembolization biomaterial for primary hepatocellular carcinoma treatment. Adv Healthc Mater, 9(13): e2000028. [DOI:10.1002/adhm.202000028] [PMID]
19. Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guerin F, Dumas I, Bossi A, Morice P, Viswanathan AN, Haie-Meder C (2019) Brachytherapy: An overview for clinicians. CA Cancer J Clin, 69(5): 386-401. [DOI:10.3322/caac.21578] [PMID]
20. Ohshima Y, Sudo H, Watanabe S, Nagatsu K, Tsuji AB, Sakashita T, Ito YM, Yoshinaga K, Higashi T, Ishioka NS (2018) Antitumor effects of radionuclide treatment using alpha-emitting meta-(211)At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur J Nucl Med Mol Imaging, 45(6): 999-1010. [DOI:10.1007/s00259-017-3919-6] [PMID] []
21. Larsen RH, Hoff P, Vergote IB, Bruland OS, Aas M, De Vos L, Nustad K (1995) Alpha-particle radiotherapy with 211At-labeled monodisperse polymer particles, 211At-labeled IgG proteins, and free 211At in a murine intraperitoneal tumor model. Gynecol Oncol, 57(1): 9-15. [DOI:10.1006/gyno.1995.1093] [PMID]
22. Meyer M (2019) Processing of collagen-based biomaterials and the resulting materials properties. Biomed Eng Online, 18(1): 24. [DOI:10.1186/s12938-019-0647-0] [PMID] []
23. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol, 105(Pt 2): 1358-1368. [DOI:10.1016/j.ijbiomac.2017.07.087] [PMID]
24. Walte A, Sriyapureddy SS, Korkmaz Z, Krull D, Bolte O, Hofmann M, Meyer GJ, Knapp WH (2007) Preparation and evaluation of 211At labelled antineoplastic antibodies. J Pharm Sci, 10(2): 277s-285s.
25. Lyczko M, Pruszynski M, Majkowska-Pilip A, Lyczko K, Was B, Meczynska-Wielgosz S, et al. (2017) (211)At labeled substance P (5-11) as potential radiopharmaceutical for glioma treatment. Nucl Med Biol, 53: 1-8. [DOI:10.1016/j.nucmedbio.2017.05.008] [PMID]
26. Salvanou EA, Stellas D, Tsoukalas C, Mavroidi B, Paravatou-Petsotas M, Kalogeropoulos N, Xanthopoulos S, et al. (2020) A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics, 12(2): 188. [DOI:10.3390/pharmaceutics12020188] [PMID] []
27. Muslimov AR, Antuganov DO, Tarakanchikova YV, Zhukov MV, Nadporojskii MA, Zyuzin MV, Timin AS (2021) Calcium Carbonate Core-Shell Particles for Incorporation of (225)Ac and Their Application in Local alpha-Radionuclide Therapy. ACS Appl Mater Interfaces, 13(22): 25599-25610. [DOI:10.1021/acsami.1c02155] [PMID]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page