1. Miller KD, Siegel RL, Lin CC, et al. (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin, 66: 271-89. [ DOI:10.3322/caac.21349] [ PMID] 2. Xu M, Zhou L, Zheng L, et al. (2021) Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett, 497: 229-42. [ DOI:10.1016/j.canlet.2020.10.037] [ PMID] 3. Shanei A and Akbari-Zadeh H (2019) Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells. J Korean Med Sci, 34: 1-12. [ DOI:10.3346/jkms.2019.34.e243] [ PMID] [ ] 4. Ebrahiminia A, Mokhtari-dizaji M, Toliyat T (2013) Ultrasonics Sonochemistry Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochemistry, 20: 366-72. [ DOI:10.1016/j.ultsonch.2012.05.016] [ PMID] 5. Pan X, Bai L, Wang H, et al. (2018) Metal-organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater, 30: 1800180.
https://doi.org/10.1002/adma.201870163 [ DOI:10.1002/adma.201800180] 6. Samadian H, Hosseini-Nami S, Kamrava SK, et al. (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol, 142: 2217-29. [ DOI:10.1007/s00432-016-2179-3] [ PMID] 7. Mehrabi M, Esmaeilpour P, Akbarzadeh A, et al. (2016) Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turkish J Med Sci, 46: 567-71. [ DOI:10.3906/sag-1412-67] [ PMID] 8. Kosheleva OK, Lai T-C, Chen NG, et al. (2016) Selective killing of cancer cells by nanoparticle-assisted ultrasound. J Nanobiotechnology, 14: 46. [ DOI:10.1186/s12951-016-0194-9] [ PMID] [ ] 9. Xu T, Zhao S, Lin C, et al. (2020) Recent advances in nanomaterials for sonodynamic therapy. Nano Res, 13: 2898-908. [ DOI:10.1007/s12274-020-2992-5] 10. Heeran AB, Berrigan HP, O'Sullivan J (2019) The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res, 192: 668-79. [ DOI:10.1667/RR15489.1] [ PMID] 11. Mukherjee S and Chakraborty A (2019) Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol, 95: 243-63. [ DOI:10.1080/09553002.2019.1547440] [ PMID] 12. Wang H, Yu KN, Hou J, et al. (2015) Radiation-induced bystander effect: early process and rapid assessment. Cancer Lett, 356: 137-44. [ DOI:10.1016/j.canlet.2013.09.031] [ PMID] 13. Bilak A, Uyetake L, Su TT. (2014) Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet, 10: e1004220. [ DOI:10.1371/journal.pgen.1004220] [ PMID] [ ] 14. Widel M, Lalik A, Krzywon A, et al. (2015) The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res Mol Mech Mutagen, 778: 61-70. [ DOI:10.1016/j.mrfmmm.2015.06.003] [ PMID] 15. Rezaei M, Kamran Samani R, Kazemi M, et al. (2021) Induction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay. Int J Radiat Res, 19: 183-9. [ DOI:10.29252/ijrr.19.1.183] 16. Marín A, Martín M, Liñán O, et al. (2015) Bystander effects and radiotherapy. Reports Pract Oncol Radiother, 20: 12-21. [ DOI:10.1016/j.rpor.2014.08.004] [ PMID] [ ] 17. Bazak J, Korytowski W, Girotti AW (2019) Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy. Cancers, 11: 1674. [ DOI:10.3390/cancers11111674] [ PMID] [ ] 18. Verma N and Tiku AB (2017) Significance and nature of bystander responses induced by various agents. Mutat Res, 773: 104-21. [ DOI:10.1016/j.mrrev.2017.05.003] [ PMID] 19. Calatayud M, Asin L, Tres A, et al. (2015) Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles. Curr Nanosci, 12: 372-7. [ DOI:10.2174/1573413712666151124195846] 20. Daguenet E, Louati S, Wozny A-S, et al. (2020) Radiation-induced bystander and abscopal effects: Important lessons from preclinical models. Br J Cancer, 123: 339-48. [ DOI:10.1038/s41416-020-0942-3] [ PMID] [ ] 21. Shanei A, Akbari-Zadeh H, Fakhimikabir H, et al. (2018) Evaluation of the therapeutic effect of 6-MV X-ray radiation on HeLa cells, in the presence of nanoparticles. J Isfahan Med Sch, 36: 25-43. 22. Shanei A, Akbari-Zadeh H, Fakhimikabir H, et al. (2019) The role of gold nanoparticles in sonosensitization of human cervical carcinoma cell line under ultrasound irradiation: An in vitro study. J Nano Res, 59: 1-14. [ DOI:10.4028/www.scientific.net/JNanoR.59.1] 23. Sengupta S and Balla VK (2018) A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res, 14: 97-111. [ DOI:10.1016/j.jare.2018.06.003] [ PMID] [ ] 24. Kooiman K, Roovers S, Langeveld SAG, et al. (2020) Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol, 46: 1296-325. [ DOI:10.1016/j.ultrasmedbio.2020.01.002] [ PMID] [ ] 25. Shanei A, Akbari-Zadeh H, Attaran N, et al. (2019) Effect of targeted gold nanoparticles size on acoustic cavitation: An in vitro study on melanoma cells. Ultrasonics, 102: 106-120. [ DOI:10.1016/j.ultras.2019.106061] [ PMID] 26. Kosheleva OK, Lai P, Chen NG, et al. (2015) Nanoparticle-assisted ultrasound for cancer therapy. Patent No. 9,138,476. 27. Brazzale C, Canaparo R, Racca L, et al. (2016) Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine, 11: 3053-70. [ DOI:10.2217/nnm-2016-0293] [ PMID] 28. Rostami A, Toossi MTB, Sazgarnia A, et al. (2016) The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines. Radiat Environ Biophys, 55: 461-6. [ DOI:10.1007/s00411-016-0669-y] [ PMID] 29. He L-L, Wang X, Wu X-X, et al. (2015) Protein damage and reactive oxygen species generation induced by the synergistic effects of ultrasound and methylene blue. Spectrochim Acta Part A Mol Biomol Spectrosc, 134: 361-6. [ DOI:10.1016/j.saa.2014.06.121] [ PMID] 30. Yahyapour R, Motevaseli E, Rezaeyan A, et al. (2018) Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm, 11: 34-45. [ DOI:10.2174/1874471011666171229123130] [ PMID] 31. Ma Y, Zhang L, Rong S, et al. (2013) Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxid Med Cell Longev, 2013,1-6.
https://doi.org/10.1155/2013/529173 [ DOI:10.1155/2013/543760] [ PMID] [ ] 32. Xu S, Wang J, Ding N, et al. (2015) Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol, 12: 1355-63. [ DOI:10.1080/15476286.2015.1100795] [ PMID] [ ] 33. Bohari SPM, Aboulkheyr H, Nur ES, et al. (2017) Low intensity ultrasound induced apoptosis in MCF-7 breast cancer cell lines. Sains Malays, 46: 575-81. [ DOI:10.17576/jsm-2017-4604-09] 34. Olsson MG, Nilsson EJC, Rutardóttir S, et al. (2010) Bystander cell death and stress response is inhibited by the radical scavenger α1-microglobulin in irradiated cell cultures. Radiat Res, 174: 590-600. [ DOI:10.1667/RR2213.1] [ PMID] 35. Koturbash I, Loree J, Kutanzi K, et al. (2008) In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys, 70: 554-62. [ DOI:10.1016/j.ijrobp.2007.09.039] [ PMID] 36. Pae H-O, Oh G-S, Choi B-M, et al. (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol, 172: 4744-51. [ DOI:10.4049/jimmunol.172.8.4744] [ PMID] 37. Fang J, Akaike T, Maeda H (2004) Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis, 9: 27-35. [ DOI:10.1023/B:APPT.0000012119.83734.4e] [ PMID] 38. Bai W-K, Shen E, Hu B (2012) Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chinese J Cancer Res, 24: 368-73. [ DOI:10.1007/s11670-012-0277-6] 39. Was H, Cichon T, Smolarczyk R, et al. (2006) Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol, 169: 2181-98. [ DOI:10.2353/ajpath.2006.051365] [ PMID] [ ]
|