:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 757-764 Back to browse issues page
Monte Carlo simulation for verification of lung stereotactic treatment plans delivered with an Elekta beam modulator collimator systems
S. Herwiningsih , A.L. Fielding
Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran 1, Malang, East Java, 65145, Indonesia , herwin@ub.ac.id
Abstract:   (714 Views)
Background: This paper makes use of Monte Carlo (MC) simulation to verify the dosimetric accuracy lung SBRT treatment plans delivered with an Elekta beam modulator multileaf collimator (MLC) system. Materials and Methods: Treatment plans of twenty early stage non-small cell lung carcinoma (NSCLC) patients were retrospectively re-calculated using the collapsed cone convolution (CCC) algorithm of the Pinnacle treatment planning system (TPS). Dose distributions were also calculated using the BEAMnrc and DOSXYZnrc MC user codes. A comparative analysis of target volume and organ at risk (OAR) dosimetry was performed between the TPS and MC dose calculation. A statistical analysis of the two dose distributions and parameters generated by the TPS and MC was performed to examine the significance of any differences. Results: The results showed that the TPS matched within 6% of the MC calculations for the planning treatment volume (PTV) coverage, mean and maximum PTV doses, and conformity index. The differences over all plans for the PTV were not statistically significant. For the organ at risk, the TPS overestimated the mean dose parameters over all patients but was only statistically significant for some organ at risks including the mean lung dose (MLD), V20Gy to the lung and V30Gy to the chest wall. Conclusion: The TPS dose calculation of lung SBRT using CCC Pinnacle3 algorithms is relatively closer to the MC calculation, however there may be inaccuracies in the TPS dose calculation for some patients, manifesting in some of the key dosimetric parameters that are used as correlates for irradiation related complications. 
Keywords: Beam modulator, dose verification, lung cancer, Monte Carlo, stereotactic radiotherapy
Full-Text [PDF 634 kb]   (501 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Folkert MR and Timmerman RD (2017) Stereotactic ablative body radiosurgery (SABR) or Stereotactic body radiation therapy (SBRT). Adv Drug Deliv Rev, 109: 3-14. [DOI:10.1016/j.addr.2016.11.005] [PMID]
2. Benedict SH, Yenice KM, Followill D, et al. (2010) Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys, 37(8): 4078-101. [DOI:10.1118/1.3438081] [PMID]
3. Timmerman RD, Herman J, Cho LC (2014) Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. Clinical Oncology J, 32(26): 2847-54. [DOI:10.1200/JCO.2014.55.4675] [PMID] []
4. Kishan AU and King CR (2017) Stereotactic body radiotherapy for low- and intermediate-risk prostate cancer. Semin Radiat Oncol, 27(3): 268-78. [DOI:10.1016/j.semradonc.2017.02.006] [PMID]
5. Nagata Y, Wulf J, Lax I, et al. (2011) Stereotactic radiotherapy of primary lung cancer and other targets: Results of consultant meeting of the international atomic energy agency. Int J Radiat Oncol Biol Phys, 79(3): 660-9. [DOI:10.1016/j.ijrobp.2010.10.004] [PMID]
6. Craig T, Xiao Y, McNulty S, Dawson LA (2022) Insights from image guided radiation therapy credentialing for the NRG oncology RTOG 1112 liver stereotactic body radiation therapy trial. Pract Radiat Oncol, S1879-8500(22): 00385-X. [DOI:10.1016/j.prro.2022.11.013] [PMID]
7. Fogliata A and Cozzi L (2017) Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case. Physica Medica, 44: 157-62. [DOI:10.1016/j.ejmp.2016.11.104] [PMID]
8. Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys, 16(4): 577-92. [DOI:10.1118/1.596360] [PMID]
9. Mackie TR, Scrimger JW, Battista JJ (1085) A convolution method of calculating dose for 15 MV X-rays. Med Phys, 12(2):188-96. [DOI:10.1118/1.595774] [PMID]
10. Reynaert N, van der Marck SC, Schaart DR, et al. (2007) Monte Carlo treatment planning for photon and electron beams. Radiation Physics and Chemistry, 76(4): 643-86. [DOI:10.1016/j.radphyschem.2006.05.015]
11. Verhaegen F and Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol, 48(21): R10-64. [DOI:10.1088/0031-9155/48/21/R01] [PMID]
12. Chetty IJ, Curran B, Cygler JE, et al. (2007) Report of the AAPM task group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys, 34(12): 4818-53. [DOI:10.1118/1.2795842] [PMID]
13. Zhao Y, Qi G, Yin G, et al. (2014) A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation. Radiation Oncology, 9: 287. [DOI:10.1186/s13014-014-0287-2] [PMID] []
14. Troeller A, Garny S, Pachmann S, et al. (2015) Stereotactic radiotherapy of intrapulmonary lesions: Comparison of different dose calculation algorithms for Oncentra MasterPlan®. Radiation Oncology, 10: 51. [DOI:10.1186/s13014-015-0354-3] [PMID] []
15. Vanderstraeten B, Reynaert N, Paelinck L, et al. (2006) Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys, 33(9): 3149-58. [DOI:10.1118/1.2241992] [PMID]
16. Hasenbalg F, Neuenschwander H, Mini R, Born EJ (2007) Collapsed cone convolution and analytical anisotropic algorithm dose calculations compared to VMC++ Monte Carlo simulations in clinical cases. Phys Med Biol, 52(13): 3679-91. [DOI:10.1088/0031-9155/52/13/002] [PMID]
17. Fotina I, Kragl G, Kroupa B, et al. (2011) Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlentherapie und Onkologie, 2011(7): 433-41. [DOI:10.1007/s00066-011-2215-9] [PMID]
18. Calvo OI, Gutiérrez AN, Stathakis S, et al. (2012) On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys, 13(3): 3751. [DOI:10.1120/jacmp.v13i3.3751] [PMID] []
19. Tsuruta Y, Nakata M, Nakamura M, et al. (2014) Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Med Phys, 41(8): 081715. [DOI:10.1118/1.4890592] [PMID]
20. Pokhrel D, Badkul R, Jiang H, et al. (2015) Technical note: Dosimetric evaluation of Monte Carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters. J Appl Clin Med Phys, 16(1): 5058. [DOI:10.1120/jacmp.v16i1.5058] [PMID] []
21. Aarup LR, Nahum AE, Zacharatou C, et al. (2009) The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiotherapy and Oncology, 91(3): 405-14. [DOI:10.1016/j.radonc.2009.01.008] [PMID]
22. Panettieri V, Wennberg B, Gagliardi G, et al. (2007) SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol, 52(14): 4265-81. [DOI:10.1088/0031-9155/52/14/016] [PMID]
23. Lax I, Panettieri V, Wennberg B, et al. (2006) Dose distributions in SBRT of lung tumors: Comparison between two different treatment planning algorithms and Monte-Carlo simulation including breathing motions. Acta Oncol, (Madr), 45(7): 978-88. [DOI:10.1080/02841860600900050] [PMID]
24. Herwiningsih S and Fielding A (2016) Focal spot estimation of an Elekta dedicated stereotactic linear accelerator Monte Carlo model. In: Journal of Physics: Conference Series, 2016. [DOI:10.1088/1742-6596/694/1/012013]
25. Patel I, Glendinning AG, Kirby MC (2005) Dosimetric characteristics of the Elekta Beam ModulatorTM. Phys Med Biol, 50(23): 5479-92. [DOI:10.1088/0031-9155/50/23/004] [PMID]
26. Fitzgerald R, Owen R, Barry T, et al. (2016) The effect of beam arrangements and the impact of non-coplanar beams on the treatment planning of stereotactic ablative radiation therapy for early stage lung cancer. J Med Radiat Sci, 63(1): 31-40. [DOI:10.1002/jmrs.118] [PMID] []
27. Ball D, Mai GT, Vinod S, et al. (2017) A randomized trial of SABR vs conventional radiotherapy for inoperable stage I non-small cell lung cancer: TROG09.02 (CHISEL). Journal of Thoracic Oncology, 12(11): S1853. [DOI:10.1016/j.jtho.2017.09.565]
28. Ball D, Mai GT, Vinod S, et al. (2019) Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomized controlled trial. Lancet Oncol, 20(4): 494-503. [DOI:10.1016/S1470-2045(18)30896-9] [PMID]
29. ACOSOG, RTOG (2011) ACOSOG Z4099/RTOG 1021: A randomized phase III study of sublobar resection (+/- brachytherapy) versus stereotactic body radiation therapy in high risk patients with stage I. Non-Small Cell Lung Cancer (NSCLC), 201.
30. Rogers DWO, Faddegon BA, Ding GX, et al. (1995) BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys, 22(5): 503-24. [DOI:10.1118/1.597552] [PMID]
31. Kairn T, Cassidy D, Sandford PM, Fielding AL (2008) Radiotherapy treatment verification using radiological thickness measured with an amorphous silicon electronic portal imaging device: Monte Carlo simulation and experiment. Phys Med Biol, 53(14): 3903-19. [DOI:10.1088/0031-9155/53/14/012] [PMID]
32. Herwiningsih S, Hanlon P, Fielding A (2014) Sensitivity of an Elekta iView GT a-Si EPID model to delivery errors for pre-treatment verification of IMRT fields. Australas Phys Eng Sci Med, 37(4): 763-770. [DOI:10.1007/s13246-014-0295-4] [PMID]
33. Kawrakow I, Rogers DWO, Walters BRB (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Medical Physics, 31: 2883-98. [DOI:10.1118/1.1788912] [PMID]
34. Crowe SB, Kairn T, Trapp JV, Fielding AL (2013) Experimental evaluation of MCDTK, the Monte Carlo DICOM tool-kit. In: IFMBE Proceedings, 2013. [DOI:10.1007/978-3-642-29305-4_475]
35. Ma CM, Mok E, Kapur A, et al. (1999)Clinical implementation of a Monte Carlo treatment planning system. Med Phys, 26(10): 2133-43. [DOI:10.1118/1.598729] [PMID]
36. Popescu IA, Shaw CP, Zavgorodni SF, Beckham WA (2005) Absolute dose calculations for Monte Carlo simulations of radiotherapy beams. Phys Med Biol, 50(14): 3375-92. [DOI:10.1088/0031-9155/50/14/013] [PMID]
37. Deasy JO, Blanco AI, Clark VH (2003) CERR: A computational environment for radiotherapy research. Med Phys, 30(5): 979-85. [DOI:10.1118/1.1568978] [PMID]
38. Wendling M, Zijp LJ, McDermott LN, et al. (2007) A fast algorithm for gamma evaluation in 3D. Med Phys, 34(5): 1647-54. [DOI:10.1118/1.2721657] [PMID]
39. Ghasemi A and Zahediasl S (2012) Normality tests for statistical analysis: A guide for non-statisticians. Int J Endocrinol Metab, 10(2): 486-9. [DOI:10.5812/ijem.3505] [PMID] []
40. Kim TK (2015) T-test as a parametric statistic. Korean J Anesthesiol, 68(6): 540-6. [DOI:10.4097/kjae.2015.68.6.540] [PMID] []
41. Bland JM and Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud, 47(8): 931-6. [DOI:10.1016/j.ijnurstu.2009.10.001]
42. De Ruysscher D, Faivre-Finn C, Moeller D, et al. (2017) European organization for research and treatment of cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiotherapy and Oncology, 124(1): 1-10. [DOI:10.1016/j.radonc.2017.06.003] [PMID]
43. Li J, Galvin J, Harrison A, et al. (2012) Dosimetric verification using Monte Carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys, 84(2): 508-13. [DOI:10.1016/j.ijrobp.2011.12.005] [PMID] []
44. Andolino DL, Forquer JA, Henderson MA, et al. (2011) Chest wall toxicity after stereotactic body radiotherapy for malignant lesions of the lung and liver. Int J Radiat Oncol Biol Phys, 80(3): 692-7. [DOI:10.1016/j.ijrobp.2010.03.020] [PMID]
45. Siebers JV, Keall PJ, Nahum AE, Mohan R (2000) Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol, 45(4): 983-95. [DOI:10.1088/0031-9155/45/4/313] [PMID]
46. Ma CM and Li J (2011) Dose specification for radiation therapy: Dose to water or dose to medium? Phys Med Biol, 56(10): 3073-89. [DOI:10.1088/0031-9155/56/10/012] [PMID]
47. Reynaert N, Crop F, Sterpin E, (2018) On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems. Phys Imaging Radiat Oncol, 5: 26-30. [DOI:10.1016/j.phro.2018.01.004] [PMID] []
48. Andreo P (2015) Dose to "water-like" media or dose to tissue in MV photons radiotherapy treatment planning: Still a matter of debate. Phys Med Biol, 60(1): 309-37. [DOI:10.1088/0031-9155/60/1/309] [PMID]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page