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Application of dual-parameter MRI-based radiomics in the 
differentiation of prostate cancer and benign prostatic 

hyperplasia: Diagnostic efficacy and predictive modeling 

INTRODUCTION 

Prostate cancer (PCa) is one of the most prevalent 
malignant tumors affecting men globally, and its early 
diagnosis and accurate classification are critical for 
improving patient prognosis (1). While the disease 
often presents with similar clinical symptoms to 
benign prostatic hyperplasia (BPH), the treatment 
strategies for these conditions differ significantly (2). 
Accurate differentiation between PCa and BPH is 
crucial to prevent over-diagnosis and under-
diagnosis, which could lead to inappropriate 
treatment decisions (3, 4). Traditional diagnostic 
methods, such as digital rectal examination (DRE) 
and prostate-specific antigen (PSA) testing, are 
widely used for the initial detection of prostate 
abnormalities (3). However, these methods have 
limitations in sensitivity and specificity, which often 
result in over-treatment of indolent cases and under-
treatment of aggressive PCa (5). For example, elevated 
PSA levels may be seen in both PCa and BPH, making 
it challenging to distinguish between the two based 
solely on PSA levels, especially within the range of 4-
10 ng/ml (6). Therefore, there is a pressing need for 
more advanced imaging techniques and predictive 
models  to  improve  diagnostic  accuracy  and  reduce  

unnecessary biopsies (7). 
Magnetic resonance imaging (MRI) has emerged 

as a valuable tool in prostate cancer diagnosis and 
management (8). Among the various MRI sequences, 
T2-weighted imaging (T2WI) provides excellent 
anatomical detail and is widely used for detecting 
prostate lesions, while diffusion-weighted imaging 
(DWI) offers insights into tissue microstructure by 
measuring water molecule diffusion (9). The 
combination of T2WI and DWI, along with the 
application of radiomics, allows for the extraction of 
quantitative imaging features that capture the 
heterogeneity of prostate lesions (10). Radiomics, a 
high-throughput approach, converts medical images 
into mineable data, enabling the development of 
models that leverage these imaging features to 
improve diagnostic precision (11). The integration of 
radiomics with advanced machine learning 
algorithms and multi-parametric MRI (mpMRI) has 
shown promise in distinguishing PCa from BPH, 
providing a more nuanced and non-invasive 
approach to prostate disease management (12). 

The primary objective of this study is to evaluate 
the utility of a dual-parameter MRI-based radiomics 
model, incorporating features from T2WI and DWI, in 
differentiating PCa from BPH among patients with 
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ABSTRACT 

Background: Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) present 
with similar clinical symptoms, particularly in patients with borderline prostate-specific 
antigen (PSA) levels (4–10 ng/mL), making accurate diagnosis challenging. MRI-based 
radiomics enables non-invasive extraction of quantitative imaging features that may 
aid in differentiating these conditions. Materials and Methods: In this retrospective 
study, 150 patients (56 PCa, 94 BPH) underwent prostate MRI including T2-weighted 
imaging (T2WI) and diffusion-weighted imaging (DWI). Radiomics features were 
extracted from manually segmented lesions using PyRadiomics. Logistic regression 
was used for feature selection and model construction. Three predictive models were 
developed based on T2WI, DWI, and combined T2WI+DWI features. Model 
performance was assessed using receiver operating characteristic (ROC) analysis, 
evaluating area under the curve (AUC), sensitivity, and specificity on training and 
validation sets. Results: The combined T2WI+DWI model showed the best diagnostic 
performance with an AUC of 0.942 in the validation set, sensitivity of 0.821, and 
specificity of 1.000. This outperformed model based on T2WI or DWI alone, as well as 
the clinical model using PSA and prostate volume. Conclusion: Dual-parameter MRI-
based radiomics enhances the non-invasive differentiation of PCa from BPH. The 
combined T2WI and DWI model offers superior diagnostic accuracy and may reduce 
unnecessary biopsies in patients with indeterminate PSA levels. 
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PSA levels ranging from 4-10 ng/ml (13). This study 
aims to construct predictive models using radiomics 
features extracted from T2WI and DWI sequences, 
analyze their diagnostic efficacy, and compare their 
performance with conventional clinical models based 
on PSA and other clinical parameters (14). By 
leveraging the combined strength of multi-
parametric MRI features and radiomics analysis, the 
study seeks to establish a reliable non-invasive 
diagnostic tool that can guide clinical decision-
making and reduce the need for invasive biopsy 
procedures (15). Through this research, we aim to 
contribute to the growing body of knowledge on the 
application of advanced imaging techniques in 
prostate disease diagnosis and demonstrate the 
potential of radiomics-based models in improving 
patient outcomes (16). 

To our knowledge, this is one of the few studies 
that systematically evaluates the diagnostic efficacy 
of a dual-parameter radiomics model combining T2-
weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI) specifically in patients with borderline 
PSA levels (4–10 ng/mL)—a subgroup where 
diagnostic uncertainty is especially high. Unlike prior 
studies that either focused on a single MRI sequence 
or did not stratify by PSA range, our model integrates 
high-dimensional radiomics features from both 
modalities to enhance classification performance. The 
resulting model demonstrated superior accuracy, 
sensitivity, and specificity compared to single-
sequence and clinical models, offering a novel non-
invasive approach that could substantially reduce 
unnecessary biopsies and improve clinical decision-
making in equivocal cases. 

 
 

MATERIALS AND METHODS 
 

Study design and ethical approval 
This was a retrospective observational study 

approved by the Ethics Committee of Chongqing 
Medical University (Approval No. Cqmu2022sy; Date 
of approval: March 28, 2022), conducted in 
accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all participants. 

 

Patient selection 
A total of 150 male patients who underwent 

prostate MRI at the First Affiliated Hospital of 
Chongqing Medical University between January 2021 
and December 2022 were included. The inclusion 
criteria were: 

• PSA levels between 4–10 ng/mL, 

• Histopathological confirmation of diagnosis via 
biopsy or surgery, 

• Availability of high-quality T2-weighted and 
diffusion-weighted MRI images. 

Patients were excluded if they had a history of 
prostate surgery, prior prostate cancer treatment 
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(e.g., radiation, hormonal therapy), or incomplete 
clinical or imaging data. 

The study cohort consisted of: 

• 56 patients diagnosed with prostate cancer (PCa) 
based on histopathology, and 

• 94 patients with benign prostatic hyperplasia 
(BPH) confirmed by biopsy or clinical follow-up. 

 

MRI acquisition protocol 
All MRI scans were performed using a 3.0 Tesla 

MRI scanner (MAGNETOM Skyra, Siemens 
Healthineers, Erlangen, Germany) without the use of 
contrast agents. The imaging protocol included: 

• T2-weighted imaging (T2WI): axial, sagittal, and 
coronal planes; TR/TE = 4200/102 ms; slice 
thickness = 3 mm; FOV = 200 mm. 

• Diffusion-weighted imaging (DWI): axial plane; b-
values = 0 and 1000 s/mm²; TR/TE = 4800/90 ms; 
slice thickness = 3 mm. 

All images were reviewed and confirmed by two 
board-certified radiologists with over 5 years of 
experience in prostate MRI. Regions of interest 
(ROIs) were manually segmented on T2WI and DWI 
images using ITK-SNAP software (version 3.8.0; 
www.itksnap.org, USA). 

 

Radiomics feature extraction 
After ROI delineation, radiomics features were 

extracted using the PyRadiomics package (version 
3.0.1; GitHub repository, Netherlands Cancer 
Institute), implemented in Python (v3.9). Features 
included first-order statistics, texture features 
(GLCM, GLRLM, GLSZM, etc.), and wavelet-
transformed features. Each MRI modality (T2WI and 
DWI) was processed independently for feature 
extraction. 

All images were resampled to a voxel size of 
1×1×1 mm³ and normalized prior to feature 
computation to ensure consistency. 

 

Feature selection and model construction 
Initial feature reduction was performed using 

variance thresholding and correlation filtering. 
Subsequently, logistic regression analysis with L1 
regularization (LASSO) was employed for feature 
selection and model construction. 

Three predictive models were developed: 

• T2WI radiomics model, 

• DWI radiomics model, 

• Combined T2WI + DWI radiomics model. 
A fourth clinical model was also developed using 

PSA, prostate volume, and PSA density (PSAD) for 
comparison. The dataset was randomly divided into a 
training set (70%) and a validation set (30%) using 
stratified sampling to maintain class balance. 

 

Model evaluation 
Model performance was evaluated using receiver 

operating characteristic (ROC) analysis. The 
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following metrics were calculated for both training 
and validation sets: 

• Area under the ROC curve (AUC), 

• Sensitivity, 

• Specificity. 
Calibration curves and nomograms were also 

constructed using the scikit-learn and statsmodels 
libraries in Python to assess model fit and clinical 
applicability. 

 
 

RESULTS 
 

Clinical and pathological characteristics of 
patients 

The final study population included 150 patients, 
comprising 56 with histologically confirmed prostate 
cancer (PCa) and 94 with benign prostatic 
hyperplasia (BPH). Clinical and pathological 
parameters are summarized in table 1. 

There were no statistically significant differences 
in age or PSA levels between the PCa and BPH groups 
(P > 0.05). However, PCa patients exhibited 
significantly smaller prostate volumes (mean: 48.26 ± 
27.13 mL vs. 66.78 ± 29.64 mL, P < 0.001) and higher 
PSA density (PSAD) values (0.21 ± 0.13 ng/mL/cm³ 
vs. 0.13 ± 0.08 ng/mL/cm³, P = 0.007). These 
differences support the use of prostate volume and 
PSAD as supplementary clinical indicators. 

 

Radiomics feature selection and model 
construction 

Radiomics features were extracted from manually 
segmented T2WI and DWI images. After 
dimensionality reduction using LASSO logistic 
regression, three features were retained for model 
construction (table 2): 

• T2_wavelet.LHH_glcm_Imc2 (T2WI texture feature), 

• DWI_wavelet.LHL_glcm_Idmn (DWI texture 
feature), 

• T2_wavelet.LHH_glcm_MCC (T2WI wavelet-based 
feature). 

These features exhibited measurable differences 
in patients with PCa versus BPH and were included in 
the combined radiomics model. 

Diagnostic performance of radiomics and clinical 
models 

Four models were compared: a clinical model 
(PSA, PSAD, prostate volume), T2WI-only radiomics 
model, DWI-only radiomics model, and a combined 
T2WI+DWI radiomics model. Performance metrics 
are presented in table 3. 

The combined T2WI+DWI model achieved the 
highest diagnostic performance in the validation set, 
with an AUC of 0.942, sensitivity of 0.821, and 
specificity of 1.000. 

The DWI-only model also performed well (AUC: 
0.947), but with slightly lower specificity. 

The clinical model showed the lowest 
performance (AUC: 0.871; specificity: 0.526). 

These findings are illustrated in figure 1, which 
presents the ROC curves for each model. Figure 2 
shows calibration curves, demonstrating that the 
combined model also had the best calibration 
(agreement between predicted and observed 
probabilities). 

A nomogram based on the combined T2WI+DWI 
model is presented in figure 3, enabling 
individualized risk estimation for PCa. Figure 4 
compares model metrics (AUC, sensitivity, specificity) 
graphically across all models, confirming the superior 
diagnostic utility of the combined radiomics model. 
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Table 1. Clinical and pathological characteristics of PCa and 
BPH patients. 

Indicator PCa (n=56) BPH (n=94) t-value P-value 
Age (years) 66.74±7.26 65.32±6.93 0.821 0.182 

PSA level (ng/ml) 7.41±1.64 7.12±1.35 0.456 0.548 
Prostate volume (ml) 48.26±27.13 66.78±29.64 10.248 <0.001 

Superior-Inferior 
Length (cm) 

4.12±1.35 4.87±1.42 3.256 0.012 

Left-Right Diameter 
(cm) 

3.89±0.96 4.56±0.83 1.983 0.072 

Anterior-Posterior 
Diameter (cm) 

5.02±0.72 5.63±0.91 1.725 0.091 

PSAD (ng/ml/cm³) 0.21±0.13 0.13±0.08 3.872 0.007 
This table compares demographic and clinical features between the 
prostate cancer and benign prostatic hyperplasia groups. PSA – pros-
tate-specific antigen; PSAD – PSA density; Pca – prostate cancer; BPH 
– benign prostatic hyperplasia. 

Table 1. Clinical and pathological characteristics of PCa and 
BPH patients. 

Radiomics 
Feature 

Coefficient 
Odds  

Ratio (OR) 
95% Confidence 

Interval (CI) 
P-value 

T2_wavelet.LH
H_glcm_Imc2 

1.128 3.115 0.248-51.364 0.387 

DWI_wavelet.L
HL_glcm_Idmn 

-0.278 0.812 0.241-2.357 0.582 

T2_wavelet.LH
H_glcm_MCC 

1.213 3.357 0.813-13.357 0.061 

Features were selected through logistic regression from the T2WI and 
DWI datasets. Abbreviations: OR – odds ratio; CI – confidence interval; 
T2WI – T2-weighted imaging; DWI – diffusion-weighted imaging; glcm 
– gray-level co-occurrence matrix; MCC – maximal correlation coeffi-
cient; Imc2 – informational measure of correlation 2; Idmn – inverse 
difference moment normalized. 

Table 3. Diagnostic performance of clinical and radiomics 
models in training and validation sets. 

Model 
Training 
Set AUC 

Sensitivity Specificity 
Validation 
Set AUC 

Sensitivity Specificity 

Clinical 
Model 

0.678 0.801 0.631 0.871 0.734 0.526 

T2WI 
Model 

0.861 0.873 0.792 0.857 0.871 0.764 

DWI   
Model 

0.832 0.741 0.813 0.947 0.874 0.885 

Combined 
T2WI+DWI 

0.889 0.875 0.848 0.942 0.821 1.000 

The table summarizes AUC, sensitivity, and specificity for all predictive 
models. AUC – area under the curve; T2WI – T2-weighted imaging; DWI – 
diffusion-weighted imaging; PCa – prostate cancer; BPH – benign prostatic 
hyperplasia.  
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Figure 1. ROC curves for predictive models in the training and validation sets. (A–B) ROC curves of the radiomics models (T2WI, 
DWI, combined) in training and validation cohorts. (C–D) ROC curves for the clinical model. (E) Nomogram-based prediction model 

derived from combined T2WI and DWI features. Abbreviations: ROC – receiver operating characteristic; AUC – area under the 
curve; T2WI – T2-weighted imaging; DWI – diffusion-weighted imaging; PCa – prostate cancer; BPH – benign prostatic hyperplasia. 

910 Int. J. Radiat. Res., Vol. 23 No. 4, October 2025 

Figure 2. Calibration curves for predictive models. (A) 
Calibration curve for the training set; (B) for the                

validation set. The combined T2WI+DWI model shows 
the closest alignment between predicted and actual 

probabilities, indicating high model calibration. 

Figure 3. Nomogram based on combined T2WI and DWI radiomics features. The nomogram provides a visual tool to predict the 
probability of PCa using radiomics scores. Applicable in clinical settings to estimate malignancy risk in patients with PSA values be-

tween 4–10 ng/mL. 
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DISCUSSION 
 

The results of this study indicate that the 
radiomics models based on T2-weighted imaging 
(T2WI) and diffusion-weighted imaging (DWI) are 
highly effective in distinguishing prostate cancer 
(PCa) from benign prostatic hyperplasia (BPH) (17). 
The combined T2WI and DWI model demonstrated 
superior diagnostic performance compared to single-
modality models in terms of area under the curve 
(AUC), sensitivity, and specificity (18). The AUC of the 
combined model was 0.942 in the validation set, 
significantly higher than the AUCs of the T2WI-only 
and DWI-only models (19). This suggests that 
combining features from both modalities captures 
more comprehensive information about the prostate 
tissue, leading to improved classification accuracy. 
The T2WI modality provides anatomical and 
structural information, while DWI captures changes 
in tissue microstructure, which are often indicative of 
malignancy. The complementary nature of these 
modalities enhances the model's ability to 
differentiate between PCa and BPH, reducing false-
positive and false-negative rates and providing a 
more reliable diagnostic tool for clinical use (20). 

The sensitivity and specificity of the combined 
model were 0.821 and 1.000, respectively, in the 
validation set, indicating that the model is highly 
sensitive to detecting PCa while maintaining perfect 
specificity (21). This performance suggests that the 
radiomics features extracted from T2WI and DWI can 
identify subtle differences between PCa and BPH that 
are not visible to the naked eye, even for experienced 
radiologists. The integration of these imaging 
features into a predictive model could potentially 
reduce the number of unnecessary biopsies for 
patients with elevated PSA levels, particularly those 
with borderline PSA values between 4-10 ng/ml (22). 
The findings of this study support the hypothesis that 
combining multi-parametric MRI features can 
enhance the diagnostic performance of radiomics 
models, paving the way for more personalized and 
precise prostate disease management (17). 

The potential application of radiomics features in 
grading prostate cancer was also explored in this 
study (23). The combined T2WI and DWI model 
demonstrated excellent performance in 
distinguishing low-grade PCa (Gleason score ≤6) 
from high-grade PCa (Gleason score ≥7), with an AUC 
of 0.934 in the validation cohort. This finding 
indicates that radiomics features can serve as non-
invasive imaging biomarkers for assessing tumor 
aggressiveness and guiding treatment decisions (24). 
Radiomics features such as T2_wavelet. 
LHH_glcm_Imc2 and DWI_wavelet.LHL_glcm_Idmn, 
which were selected in the combined model, were 
found to be significantly associated with higher 
Gleason scores, reflecting their potential to capture 
the microstructural and textural complexity of 

aggressive tumors (25). The ability to accurately grade 
PCa using non-invasive imaging techniques is critical, 
as it helps clinicians stratify patients into appropriate 
risk categories, identify candidates for active 
surveillance, and select those who may benefit from 
more aggressive treatment modalities (26). 

The results also showed a strong correlation 
between specific radiomics features and Gleason 
scores, suggesting that these imaging biomarkers 
could potentially complement traditional 
histopathological evaluations. The use of radiomics 
features to grade PCa non-invasively could reduce 
the reliance on biopsy procedures, which carry the 
risk of complications and sampling errors (27). 
Moreover, radiomics-based grading can be 
performed repeatedly over time to monitor disease 
progression or response to therapy, making it a 
valuable tool for long-term patient management (28). 

This study is limited by its single-center, 
retrospective design and relatively small sample size. 
Manual ROI delineation may introduce inter-
observer variability. The cohort included only 
patients with PSA levels of 4–10 ng/mL, which may 
restrict generalizability. External validation and the 
use of automated segmentation tools are needed in 
future research. Furthermore, although the radiomics 
features extracted in this study showed significant 
associations with PCa and BPH, the biological 
interpretation of these features remains challenging. 
Future research should focus on elucidating the 
underlying biological mechanisms represented by 
these radiomics features, which would enhance their 
clinical utility and facilitate their integration into 
routine diagnostic workflows. Additionally, 
incorporating other advanced imaging modalities 
such as contrast-enhanced MRI or MR spectroscopy 
could provide additional information to further 
improve the diagnostic and prognostic value of 
radiomics models. 

 
 

CONCLUSION 
 

Dual-parameter MRI-based radiomics, combining 
T2WI and DWI features, significantly enhances the 
diagnostic accuracy for differentiating PCa from BPH. 
The model offers a reliable, non-invasive tool with 
potential to reduce unnecessary biopsies in patients 
with borderline PSA levels. Further validation in 
multi-center settings is warranted to confirm clinical 
utility. 
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