[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 14, Issue 2 (4-2016)                   Int J Radiat Res 2016, 14(2): 99-104 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parlak Y, Demir M, Cavdar I, Ereees S, Gumuser G, Uysal B, et al . Bone marrow radiation dosimetry of high dose 131I treatment in differentiated thyroid carcinoma patients. Int J Radiat Res 2016; 14 (2) :99-104
URL: http://ijrr.com/article-1-1712-en.html
Istanbul University , demirm@istanbul.edu.tr
Abstract:   (8402 Views)

Background: Radiation absorbed dose to the red bone marrow, a critical organ in the therapy of thyroid carcinoma, is generally kept below 2 Gy for non-myeloablative therapies. The aim of this study was to calculate bone marrow radiation dose by using MIRDOSE3 package program and to optimize the safe limit of activity to be administered to the thyroid cancer patients. Materials and Methods: In this study, 83 thyroid cancer patients were divided into 3 groups based on the amount of activity administered into the body. In the groups, 3700 MBq, 5550 MBq and 7400 MBq activities were used respectively. The curves of time-activity were drawn from blood samples counts and effective half-life and residence time were calculated. Correlations of bone marrow radiation dose and radioiodine effective half-life were determined as a function of administered activity via ANOVA test. Tg levels and tumour diameters were compared using Spearman’s correlation. Results: The effective half-lives of 131I for three groups of whole-body, receiving 3700 MBq, 5550 MBq and 7400 MBq were calculated as 20.57±5.4, 17.8±5.8 and 18.7±3.9 hours, respectively. The average bone marrow doses for 3 groups of patients were 0.32±0.08 Gy, 0.42±0.14 Gy and 0.60±0.24 Gy, respectively. Conclusion: It was concluded that, the bone marrow dose to the patients still remains within the recommended level even after administering an activity of 7400 MBq of 131I to the patients.

Full-Text [PDF 523 kb]   (2885 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4722