[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 14, Issue 2 (4-2016)                   Int J Radiat Res 2016, 14(2): 127-131 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int J Radiat Res 2016; 14 (2) :127-131
URL: http://ijrr.com/article-1-1716-en.html
Shiraz University of Medical Sciences , mmortazavi@sums.ac.ir
Abstract:   (9086 Views)

Background: It has recently been shown that the particle size of materials used for radiation shielding can affect the magnitude of radiation attenuation. Over the past years, application of nano-structured materials in radiation shielding has attracted attention world-wide. The purpose of this study was to investigate the shielding properties of the lead-free shields containing micro and nano-sized WO3 against low energy x-rays. Materials and Methods: The radiation shields were constructed using nano and micro WO3 particles incorporated into an EPVC polymer matrix. The attenuation coefficients of the designed shields were evaluated for low energy x-rays (diagnostic radiology energy range). Results: The results indicate that nano-structured WO3/PVC shields have higher photon attenuation properties compared to those of the micro-sized samples. Conclusion: Our experiment clearly shows that the smaller size of nano-structured WO3 particles can guarantee a better radiation shielding property. However, it is too early to draw any conclusion on the possible mechanisms of enhanced attenuation of nano-sized WO3 particles.

Full-Text [PDF 1326 kb]   (3874 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4718