[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 15, Issue 3 (7-2017) ::
Int J Radiat Res 2017, 15(3): 275-282 Back to browse issues page
Monte carlo simulation of varian clinac iX 10 MV photon beam for small field dosimetry
S. Yani , M.F. Rhani , R.C.X. Soh , F. Haryanto , I. Arif
1Department of Physics, Faculty of Mathematics and Natural Sciences, Institute Technology Bandung, Indonesia , sitti.yani@s.itb.ac.id
Abstract:   (7167 Views)
Background: The lack of lateral electronic disequilibrium (LED) becomes a main problem in small field. This factor affects the dose in target volume cannot predict correctly. In addition, utilization of high-energy linear accelerator (10 MV) can emit some unwanted particles (electron contamination). Therefore, the aim of this study was to characterize head linear accelerator (linac) Varian Clinac iX 10 MV photon beam for square small field size (1×1, 2×2, 3×3, 4×4 and 5×5 cm2) using Monte Carlo (MC) simulation.
Materials and Methods: The commissioning process for this linac, has been conducted for field size 6×6, 10×10 and 20×20 cm2 by comparing the measurement and MC simulation data. Head linac simulation was performed with BEAMnrc and dose calculation with DOSXYZnrc. The phase space (phsp) data from BEAMnrc was analyzed using BEAMDP to get the particles information in scoring plane. Results and Discussion: The scatter angle of particles depends on the field size. This factor affects the penumbra width in water phantom. On the other hand, PDD data show that the depth of maximum dose and penumbra width in small field shifted correspond with the number of scatter particle. The difference of relative output factor between measurement and MC results were found less than 2%. However, the 2% difference was still acceptable in photon beam dosimetry. Conclusion: From this simulation, the electron contamination give contribution in surface dose of water phantom about 13.0581% and less than 1% for field size 10×10 cm2 and small field size, respectively.

Keywords: Photon beam, Monte Carlo, small field dosimetry.
Full-Text [PDF 1229 kb]   (3588 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yani S, Rhani M, Soh R, Haryanto F, Arif I. Monte carlo simulation of varian clinac iX 10 MV photon beam for small field dosimetry. Int J Radiat Res 2017; 15 (3) :275-282
URL: http://ijrr.com/article-1-2058-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 15, Issue 3 (7-2017) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652