[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 18, Issue 3 (7-2020)                   Int J Radiat Res 2020, 18(3): 521-530 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chun M, Kim J, Oh D, Wu H, Park J. Effect of dose grid resolution on the results of patient-specific quality assurance for intensity-modulated radiation therapy and volumetric modulated arc therapy. Int J Radiat Res 2020; 18 (3) :521-530
URL: http://ijrr.com/article-1-3052-en.html
Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea , leodavinci@naver.com
Abstract:   (4063 Views)
Background: This study aims to investigate the effect of reference dose calculation grid size (RDCGS) on gamma passing rate (GPR) for patient-specific quality assurance of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Materials and Methods: A total of 20 patients were retrospectively selected. Both IMRT and VMAT plans were generated for each patient. Reference dose distributions for gamma analysis were calculated with RDCGS of 1–5 mm at intervals of 1 mm. Dose distributions were measured using MapCHECK2 and ArcCHECK dosimeters. Both global and local gamma analyses with gamma criteria of 3%/3 mm, 2%/3 mm, 2%/2 mm, and 2%/1 mm were performed with various RDCGS. Results: As the RDCGS increased from 1 mm to 5 mm, the average global GPRs with 2%/2 mm for VMAT with MapCHECK2 and ArcCHECK decreased by 9.3% and 5.9%, respectively. The average local GPRs decreased by 14% and 11.7%, respectively. For IMRT, the global GPRs decreased by 4.8% and 6%, respectively, whereas the local GPRs decreased by 10.5% and 8.6%, respectively. The effect of the RDCGS on the GPRs became larger when performing local gamma analysis as well as when applying small distance-to-agreement (DTA). As the RDCGS increased, the average changes in the GPR per mm of DTA change increased regardless of the type of radiotherapy, detector, or gamma analysis. Conclusion: For an accurate verification of the IMRT and VMAT plans, it is recommended that the reference dose distribution must be calculated with the smallest possible RDCGS.
Full-Text [PDF 1805 kb]   (2016 Downloads)    
Type of Study: Original Research | Subject: Medical Physics

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4722