[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 19, Issue 1 (1-2021) ::
Int J Radiat Res 2021, 19(1): 23-29 Back to browse issues page
Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
F. Maroufkhani , S.M.M. Abtahi , T. Kakavand
Physics Department, Imam Khomeini International University, Qazvin, Iran , sm.abtahi@sci.ikiu.ac.ir
Abstract:   (2674 Views)
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy range of incident proton beams has been estimated in order to have the Bragg peaks inside the breast tissue. The equivalent dose of secondary particles, including neutron and photon in vital organs, were evaluated. The TALYS code was used to investigate the neutron and photon particles’ production cross-sections. Results: The results showed that for the proton energy range of 60-70 MeV, the Bragg peaks positioned inside the breast. The maximum dose of 0.65 mSv/nA-p was in Heart-Left Ventricle due to neutrons production by incident 70 MeV protons. However, the maximum absorbed dose, due to the secondary particles, was less than 0.0004% of proton equivalent dose at the Bragg peak. The maximum photons dose and the protons dose into the Heart-Left Ventricle were 8.42 µSv/nA-p and 68.08 µSv/nA-p, respectively, which were negligible compared to the proton equivalent dose at the Bragg peak. Conclusion: The results confirmed a noticeable lower dose in the heart and lungs for breast proton therapy, compared with the previously reported dose for breast radiotherapy using photon. Most of the dose absorbed by the organs is due to the secondary neutrons, but those are low enough to be neglected. 
Keywords: Proton therapy, breast, secondary particles, equivalent dose, MCNPX.
Full-Text [PDF 1662 kb]   (978 Downloads)    
Type of Study: Original Research | Subject: Medical Physics
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maroufkhani F, Abtahi S, Kakavand T. Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX. Int J Radiat Res 2021; 19 (1) :23-29
URL: http://ijrr.com/article-1-3452-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 1 (1-2021) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652