[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 111-116 Back to browse issues page
The effect of feeding state on the level of detections of plasma metabolites in rats after irradiation
R. Li , J. Cai , Y. Wang , C. Fu , B. Hu
Abstract:   (613 Views)
Background: The existence of correlates between radiation and plasma metabolites in rats might be affected by feeding conditions. Materials and Methods: The rats were kept without food and water for a certain time before the blood was harvested on the seventh day after X-ray irradiation at doses of 0 and 8 Gy. The plasma metabolites were tested using Enzyme-Linked Immunosorbent Assay (ELISA). Results: Our results showed that abrosia for 2 h before blood harvesting could increase the level of detections of both interleukin-6 (IL-6) and glycine (Gly) in rats. Furthermore, abrosia and meanwhile water deprivation for 2-4 h increased better the level of detections of IL-6 and Gly in rats. Conclusion: The level of detections of biomarkers in the blood may be more authentic and can better reflect the changes in the experimental animals after stress when they are treated by both abrosia and water deprivation for 2 h before blood harvesting.
Keywords: Abrosia, water deprivation, blood harvesting, level of detections of plasma metabolites, irradiation.
Full-Text [PDF 857 kb]   (633 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Li W, Zhou S, Jia M, Li X, Li L, Wang Q, et al. (2022) Early Biomarkers Associated with P53 Signaling for Acute Radiation Injury. Life (Basel, Switzerland), 12(1). [DOI:10.3390/life12010099] [PMID] []
2. Bauchinger M (1995) Cytogenetic research after accidental radiation exposure. Stem cells (Dayton, Ohio): 182-90.
3. Matsubara S, Kuwabara Y, Horiuchi J, Suzuki S, Ito A (1988) Dose distribution of neutron beam and chromosome analysis. International Journal of Radiation Oncology, Biology, Physics, 14(3): 503-9. [DOI:10.1016/0360-3016(88)90267-2]
4. Kanda R (2000) Improvement of accuracy of chromosome aberration analysis for biological radiation dosimetry. Journal of Radiation Research, 41(1): 1-8. [DOI:10.1269/jrr.41.1] [PMID]
5. Sorokine-Durm I, Durand V, Le Roy A, Paillole N, Roy L, Voisin P (1997) Is FISH painting an appropriate biological marker for dose estimates of suspected accidental radiation overexposure? A review of cases investigated in France from 1995 to 1996. Environmental health perspectives, 1427-32. https://doi.org/10.2307/3433644 [DOI:10.1289/ehp.97105s61427] [PMID] []
6. Pluth J, Fried L, Kirchgessner C (2001) Severe combined immunodeficient cells expressing mutant hRAD54 exhibit a marked DNA double-strand break repair and error-prone chromosome repair defect. Cancer research, 61(6):2649-55.
7. Blakely W, Prasanna P, Kolanko C, Pyle M, Mosbrook D, Loats A, et al. (1995) Application of the premature chromosome condensation assay in simulated partial-body radiation exposures: evaluation of the use of an automated metaphase-finder. Stem cells (Dayton, Ohio), 223-30.
8. Cheng X, Pantelias G, Okayasu R, Cheong N, Iliakis G (1993) Mitosis-promoting factor activity of inducer mitotic cells may affect radiation yield of interphase chromosome breaks in the premature chromosome condensation assay. Cancer Research, 53(23): 5592-6.
9. Treibel F, Nguyen M, Ahmed M, Dombrowsky A, Wilkens JJ, Combs SE, et al. (2021) Establishment of Microbeam Radiation Therapy at a Small-Animal Irradiator. Int J Radiat Oncol Biol Phys, 109(2): 626-36. [DOI:10.1016/j.ijrobp.2020.09.039] [PMID]
10. Olipitz W, Wiktor-Brown D, Shuga J, Pang B, McFaline J, Lonkar P, et al. (2012) Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation. Environ Health Perspect, 120(8): 1130-6. [DOI:10.1289/ehp.1104294] [PMID] []
11. Misik M, Krupitza G, Misikova K, Micieta K, Nersesyan A, Kundi M, et al. (2016) The Tradescantia micronucleus assay is a highly sensitive tool for the detection of low levels of radioactivity in environmental samples. Environ Pollut, 219: 1044-8. [DOI:10.1016/j.envpol.2016.09.004] [PMID]
12. Calabrese E (2021) LNT and cancer risk assessment: Its flawed foundations part 1: Radiation and leukemia: Where LNT began. Environmental Research, 197: 111025. https://doi.org/10.1016/j.envres.2021.111041 [DOI:10.1016/j.envres.2021.111025]
13. Royba E, Repin M, Pampou S, Karan C, Brenner DJ, Garty G (2019) RABiT-II-DCA: A Fully-automated Dicentric Chromosome Assay in Multiwell Plates. Radiat Res, 192(3): 311-23. [DOI:10.1667/RR15266.1] [PMID] []
14. Chai Y, Wang J, Wang T, Yang Y, Su J, Shi F, et al. (2015) Application of 1H NMR spectroscopy-based metabonomics to feces of cervical cancer patients with radiation-induced acute intestinal symptoms. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 117(2): 294-301. [DOI:10.1016/j.radonc.2015.07.037] [PMID]
15. Khan A, Rana P, Devi M, Chaturvedi S, Javed S, Tripathi R, et al. (2011) Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of γ-irradiated mice. International Journal of Radiation Biology, 87(1): 91-7. [DOI:10.3109/09553002.2010.518211] [PMID]
16. Hinzman C, Baulch J, Mehta K, Girgis M, Bansal S, Gill K, et al. (2019) Plasma-derived extracellular vesicles yield predictive markers of cranial irradiation exposure in mice. Scientific Reports, 9(1): 9460. [DOI:10.1038/s41598-019-45970-x] [PMID] []
17. Tichy A, Kabacik S, O'Brien G, Pejchal J, Sinkorova Z, Kmochova A, et al. (2018) The first in-vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PloS one, 13(2): e0193412. [DOI:10.1371/journal.pone.0193412] [PMID] []
18. Chen Z, Coy S, Pannkuk E, Laiakis E, Fornace A, Vouros P (2018) Differential mobility spectrometry-mass spectrometry (DMS-MS) in radiation biodosimetry: Rapid and high-throughput quantitation of multiple radiation biomarkers in nonhuman primate urine. Journal of the American Society for Mass Spectrometry, 29(8): 1650-64. [DOI:10.1007/s13361-018-1977-z] [PMID] []
19. Wathen L, Eder P, Horwith G, Wallace R (2021) Using biodosimetry to enhance the public health response to a nuclear incident. International Journal of Radiation Biology, 97: S6-S9. [DOI:10.1080/09553002.2020.1820605] [PMID]
20. Xu F, Lee K, Xia W, Liao H, Lu Q, Zhang J, et al. (2020) Administration of Lapatinib with Food Increases Its Plasma Concentration in Chinese Patients with Metastatic Breast Cancer: A Prospective Phase II Study. The Oncologist, 25(9): e1286-e91. [DOI:10.1634/theoncologist.2020-0044] [PMID] []
21. Permana A, Stewart S, Domínguez-Robles J, Amir M, Bahar M, Donnelly R, et al. (2021) Development and validation of a high-performance liquid chromatography method for levothyroxine sodium quantification in plasma for pre-clinical evaluation of long-acting drug delivery systems. Analytical Methods: Advancing Methods and Applications, 13(43): 5204-10. [DOI:10.1039/D1AY01049B] [PMID]
22. Schultze-Mosgau M, Kaiser A, Zollmann F (2021) Effect of food intake on the pharmacokinetics of the selective progesterone receptor modulator Vilaprisan: A randomized clinical study in healthy postmenopausal women. Clinical Pharmacology in Drug Development, 10(6): 675-80. [DOI:10.1002/cpdd.876] [PMID] []
23. Agnieszka W, Paweł P, Małgorzata K (2021) How to optimize the effectiveness and safety of Parkinson's disease therapy? - a systematic review of drugs interactions with food and dietary supplements. Current neuropharmacology, 20(7): 1427-1447. [DOI:10.2174/1570159X19666211116142806] [PMID] []
24. Al-Hirmizy D, Wood N, Ko S, Henry A, Nugent D, West R, et al. (2020) A single centre randomised control study to assess the impact of pre-operative carbohydrate loading on women undergoing major surgery for epithelial ovarian cancer. Cureus, 12(8): e10169. [DOI:10.7759/cureus.10169] [PMID] []
25. Zhang Y, Zhou X, Li C, Wu J, Kuo J, Wang C (2014) Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. Molecular BioSystems, 10(6): 1441-9. [DOI:10.1039/C3MB70526A] [PMID]
26. Hai-xiang L (2013) Screening of metabolic markers of radiation injury and the effect of mACON on radiation sensitivity. Anhui Medical University.
27. Guo Mingxing W C, Tong Weihang (2015) Application of metabolomics in the study of radiation injury. Chinese Medical Journal of PLA, 27(12): 113-6.
28. Zhao H, Xi C, Tian M, Lu X, Cai T, Li S, et al. (2020) Identification of potential radiation responsive metabolic biomarkers in plasma of rats exposed to different doses of cobalt-60 gamma rays. Dose-response: A publication of International Hormesis Society, 18(4): 1559325820979570. [DOI:10.1177/1559325820979570] [PMID] []
29. Sato Y, Yamaguchi M, Kashiwakura I (2022) An analysis of the serum metabolomic profile for the radiomitigative effect of the thrombopoietin receptor agonist romiplostim in lethally whole-body-irradiated mice. Metabolites, 12(2). [DOI:10.3390/metabo12020161] [PMID] []
30. Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E, et al. (2021) Effect of fractionated whole-brain irradiation on brain and plasma in a rat model: Metabolic, volumetric and histopathological changes. Neurochemistry International, 145: 104985. [DOI:10.1016/j.neuint.2021.104985] [PMID]
31. Xi C, Zhao H, Liu H, Xiang J, Lu X, Cai T, et al. (2022) Screening of radiation gastrointestinal injury biomarkers in rat plasma by high-coverage targeted lipidomics. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 5: 448-460. [DOI:10.1080/1354750X.2022.2056920] [PMID]
32. Liu H and Liu Q (2022) Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. International Journal of Radiation Biology, 1-42. [DOI:10.1080/09553002.2022.2063430]
33. Kawano M M, Mihara K, Huang N, Tsujimoto T, Kuramoto A (1995) Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood, 85(2): 487-94. https://doi.org/10.1182/blood.V85.2.487.bloodjournal852487 [DOI:10.1182/blood.V85.2.487.487]
34. Arda H, Doganlar O (2021) Stress-induced miRNAs isolated from wheat have a unique therapeutic potential in ultraviolet-stressed human keratinocyte cells. Environ Sci Pollut Res Int. [DOI:10.1007/s11356-021-17039-8] [PMID]
35. Dreyfuss A D, Goia D, Shoniyozov K, Shewale S V, Velalopoulou A, Mazzoni S, et al. (2021) A Novel Mouse Model of Radiation-Induced Cardiac Injury Reveals Biological and Radiological Biomarkers of Cardiac Dysfunction with Potential Clinical Relevance. Clin Cancer Res, 27(8):2266-76. [DOI:10.1158/1078-0432.CCR-20-3882] [PMID] []
36. Wang J, Wang X, Sui Y, Zhang X, Hou W (2020) Establishment of an in vitro model using the rat alveolar macrophage cell line NR8383. J Tradit Chin Med, 40(6): 917-21.
37. Shimizu-Okabe C, Kobayashi S, Kim J, Kosaka Y, Sunagawa M, Okabe A, et al. (2022) Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord. Int J Mol Sci, 23(2). [DOI:10.3390/ijms23020834] [PMID] []
38. Zhao M, Lau K, Zhou X, Wu J, Yang J, Wang C (2017) Urinary metabolic signatures and early triage of acute radiation exposure in rat model. Molecular BioSystems, 13(4): 756-66. [DOI:10.1039/C6MB00785F] [PMID]
39. Hayashi T, Furukawa K, Morishita Y, Hayashi I, Kato N, Yoshida K, et al. (2021) Intracellular reactive oxygen species level in blood cells of atomic bomb survivors is increased due to aging and radiation exposure. Free Radical Biology & Medicine, 171: 126-34. [DOI:10.1016/j.freeradbiomed.2021.05.017] [PMID]
40. Yang Y, Fan X, Ji Y, Li J, Dai Z, Wu Z (2022) Glycine represses endoplasmic reticulum stress-related apoptosis and improves intestinal barrier by activating mammalian target of rapamycin complex 1 signaling. Animal Nutrition (Zhongguo xu mu shou yi xue hui), 8(1): 1-9. [DOI:10.1016/j.aninu.2021.05.004] [PMID] []
41. Sun Y, Huang J, Duan X, Ding F (2021) Direct Observation of β-Barrel Intermediates in the Self-Assembly of Toxic SOD1 and Absence in Nontoxic Glycine Mutants. Journal of Chemical Information and Modeling, 61(2): 966-75. [DOI:10.1021/acs.jcim.0c01319] [PMID] []
42. Lindell Jonsson E, Erngren I, Engskog M, Haglöf J, Arvidsson T, Hedeland M, et al. (2019) Exploring Radiation Response in Two Head and Neck Squamous Carcinoma Cell Lines Through Metabolic Profiling. Frontiers in Oncology, 9: 825. [DOI:10.3389/fonc.2019.00825] [PMID] []
43. Liu H, Wang Z, Zhang X, Qiao Y, Wu S, Dong F, et al. (2013) Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. Radiation Protection Dosimetry, 154(1): 9-17. [DOI:10.1093/rpd/ncs138] [PMID]
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Li R, Cai J, Wang Y, Fu C, Hu B. The effect of feeding state on the level of detections of plasma metabolites in rats after irradiation. Int J Radiat Res 2023; 21 (1) :111-116
URL: http://ijrr.com/article-1-4581-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652