[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 131-137 Back to browse issues page
Simulation based analysis of 4He, 7Li, 8Be and 10B ions for heavy ion therapy
F. Ekinci , E. Bostanci , M.S. Güzel , O. Dagli
Ankara University, Institute of Nuclear Sciences, Besevler 10. Yıl Campus, Tandogan Ankara, Turkey , fatih.ekinci@hotmail.com.tr
Abstract:   (556 Views)
Background: The therapeutic usage of heavy ions has received much attention due to its advantageous physical and radiobiological assets compared to photon-based therapy. Thanks to these unique properties of heavy ion radiotherapy, it can allow dose increase in tumors while reducing the radiation dose in adjacent normal tissues. Materials and Methods: The main aim of this study is to analyze the LET, recoils, lateral scattering, and phonon energies of selected 4He, 7Li, 8Be and 10B heavy ions in the water phantom in the therapeutic energy range. This analysis was performed by using MC based TRIM simulation method of interactions. Results: The main innovation that this study will provide to the literature is not only ionization but also the calculation of recoils, lateral scattering and phonon oscillation resulting from all interactions. According to the calculation results, the largest recoils peak value was found to be 7.957 eV/A-ion×103 in the B ion, and it was observed that it formed an average of 88% more recoil peaks than He ion, 53% on average than Li ion and 24% more than Be ion on average. In the lateral scattering, the greatest value occurred in the He ion. It should be noted that He ion produced 42%, 57% and 71% more lateral scattering than Li, Be and B ions respectively. As a result of all these interactions, 32% of the phonon and 68% of the phonon were formed respectively by the recoil interactions. Conclusion: This study includes ionization and all particle-based target interactions.
Keywords: Heavy ion therapy, Bragg cure, recoil, lateral straggle, phonon.
Full-Text [PDF 649 kb]   (705 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Senirkentli GB, Ekinci F, Bostanci E, Güzel MS, Dağli Ö, et al. (2021) Therapy for Mandibula Plate Phantom. Healthcare, 9(2): 167. [DOI:10.3390/healthcare9020167] []
2. Ekinci F and Bölükdemir MH (2019) The Effect of the Second Peak formed in Biomaterials used in a Slab Head Phantom on the Proton Bragg Peak. Journal of Polytechnıc, 23(1): 129-136. [DOI:10.2339/politeknik.523001]
3. Durante M and Loeffler JS (2010) Charged particles in radiation oncology Nature Reviews. Clinical Oncology, 7: 37-43, ISSN 1759-4774. [DOI:10.1038/nrclinonc.2009.183] [PMID]
4. PTCOG (2018) Particle therapy co-operative group. https://www.ptcog.ch accessed: 2020-10-20
5. Tessonnier T, Böhlen TT, Ceruti F, Ferrari A, Sala P, (2017) Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center. Physics in Medicine and Biology, 62(16): 6579-6594. [DOI:10.1088/1361-6560/aa7be4] [PMID]
6. Tessonnier T, Mairani A, Brons S, Haberer T, Debus J, Parodi K (2017) Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams. Physics in Medicine and Biology, 62(10): 3958-3982. [DOI:10.1088/1361-6560/aa6516]
7. Hong L, Goitein M, Bucciolini M, Comiskey R, et al. (1970) A pencil beam algorithm for proton dose calculations. Physics in Medicine and Biology, 41(8): 1305-1330. [DOI:10.1088/0031-9155/41/8/005] [PMID]
8. Kozlowska WS, Böhlen TT, Cuccagna C, Ferrari A, et al. (2019) FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy. Physics in Medicine and Biology, 64: 075012. [DOI:10.1088/1361-6560/ab02cb]
9. Mein S, Choi K, Kopp B, Tessonnier T, Bauer J, et al. (2018) Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: the FRoG platform. Scientific Reports, 8(1). [DOI:10.1038/s41598-018-33194-4] [PMID] []
10. Lundkvist J, Ekman M, Ericsson S, Jonsson B, Glimelius B (2005) Proton therapy of cancer: Potential clinical advantages and cost-effectiveness. Acta Oncol, 44(8): 850-61. [DOI:10.1080/02841860500341157] [PMID]
11. Kantemiris I, Karaiskos P, Papagiannis P, Angelopoulos A (2011) Dose and dose averaged LET comparison of H1, He4, Li6, Be8, B10, C12, N14 and O16 ion beams forming a spread-out Bragg peak. Med Phys, 38(12): 6585-91. [DOI:10.1118/1.3662911]
12. Pshenichnov I, Mishustin I, Greiner W (2008) Comparative study of depth-dose distributions for beams of light and heavy nuclei in tissue-like media. Nucl Instrum Methods B, 266(7): 1094-1098. [DOI:10.1016/j.nimb.2008.02.025]
13. Tessonnier T, Mairani A, Chen W, Sala P, Cerutti F, et al. (2018) Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison. Radiation Oncology, 13(1). [DOI:10.1186/s13014-017-0944-3] [PMID] []
14. Yabe T, Yamamoto S, Oda M, Mori K, Toshito T, Akagi T (2020) Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy. Medical Physics, 47(9): 3882-3891. [DOI:10.1002/mp.14372] [PMID]
15. Dudouet J, Cussol D, Durand D, Labalme M (2014) Benchmarking GEANT4 nuclear models for hadron therapy with 95 MeV/nucleon carbon ions. Phys Rev C, 89: 054616. [DOI:10.1103/PhysRevC.89.054616]
16. Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, et al. (2016) Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget, 7(35): 56676-56689. [DOI:10.18632/oncotarget.10996] []
17. Rogers D (2006) Fifty years of Monte Carlo simulations for medical. Physics in Medicine and Biology, 51: R287-R301. [DOI:10.1088/0031-9155/51/13/R17] [PMID]
18. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM-The Stopping and Range of Ions in Matter; SRIM Co: Boston, MA, USA, 2008; ISBN 0-9654207-1-X.
19. Posselt M and Biersack JP (1986) Influence of recoil transport on energy-loss and damage profiles. Nuclear Instruments and Methods in Physics Research B, 15(1-6): 20-24. [DOI:10.1016/0168-583X(86)90244-2]
20. Behrens R and Hupe O (2016) Influence of the phantom shape (slab, cylınder or alderson) on the performance of an hp (3) eye dosemeter. Radiation Protection Dosimetry, 168(4): 441-449. [DOI:10.1093/rpd/ncv366] [PMID]
21. Kinchin GH, Pease RS. 1955 The Displacement of Atoms in Solids by Radiation. Rep Prog Phys, 18: 1-51. [DOI:10.1088/0034-4885/18/1/301]
22. Stoller R, Toloczko M, Was G, Certain A, Dwaraknath S, Garner F (2013) On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res B, 310: 75-80. [DOI:10.1016/j.nimb.2013.05.008]
23. Khlifa RH, Nikitenkov NN, Viktor N, Kudiiarov VN (2021) On the use of chromium coating for inner-side fuel cladding protection: Thickness identification based on fission fragments implantation and damage profile. Coatings, 11(6): 710. [DOI:10.3390/coatings11060710]
24. Ziegler JF (2006) SRIM: The stopping and range of ion in matter. https://www.srim.org accessed: 20.09.2019
25. Golovchenko AN, Skvarč J, et al. (2002) Total charge-changing and partial cross-sectio measurements in the reactions of ~100-250 MeV/nucleon 12C in carbon, paraffin and water. Phys Rev C, 66: 039901. https://doi.org/10.1103/PhysRevC.66.014609 [DOI:10.1103/PhysRevC.66.039901]
26. Karger CP, Jakel O, Palmans H, Kanai T (2010) Dosimetry for ion beam radiotherapy. Phys Med Biol, 55: R193-R234. [DOI:10.1088/0031-9155/55/21/R01] [PMID]
27. ICRU (1979) International Commission on Radiation Units and Measurements. Average Energy Required to Produce an Ion Pair, ICRU Report 31 (International Commission on Radiation Units and Measurements, Bethesda, MD)
28. Ekinci F, Bostanci E, Guzel MS, Dagli O (2022) Effect of different embolization materials on proton beam stereotactic radiosurgery Arteriovenous Malformation dose distributions using the Monte Carlo simulation code. Journal of Radiation Research and Applied Sciences, 15(3): 191-197. [DOI:10.1016/j.jrras.2022.05.011]
29. Loeffler JS and Durante M (2013) Charged particle therapyoptimization, challenges and future directions. Nat Rev Clin Oncol, 10: 411-424. [DOI:10.1038/nrclinonc.2013.79] [PMID]
30. Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, et al. (2014) Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer, 120(21): 3410-3417. [DOI:10.1002/cncr.28877] [PMID]
31. Schulz-Ertner D and Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol, 25(8): 953-964. [DOI:10.1200/JCO.2006.09.7816] [PMID]
32. Grun R, Friedrich T, Kramer M, Zink K, Durante M, et al. (2015) Assessment of potential advantages of relevant ions for particle therapy: a model-based study. Med Phys, 42(2): 1037-1047. [DOI:10.1118/1.4905374] [PMID]
33. Phillips TL, Fu KK, Curtis SB (1977) Tumor biology of helium and heavy ions. Int J Radiat Oncol Biol Phys, 3: 109-113. [DOI:10.1016/0360-3016(77)90236-X] [PMID]
34. Strobele J, Schreiner T, Fuchs H, Georg D (2012) Comparison of basic features of proton and helium ion pencil beams in water using GATE. Z Med Phys, 22(3): 170-178. [DOI:10.1016/j.zemedi.2011.12.001] [PMID]
35. Orecchia R, Krengli M, Jereczek-Fossa BA, Franzetti S, Gerard JP. 2004. Clinical and research validity of hadrontherapy with ion beams. Crit Rev Oncol Hematol, 51(2): 81-90. [DOI:10.1016/j.critrevonc.2004.04.005] [PMID]
36. Matsufuji N, Fukumara A, Komori M, Kanai T, Kohno T (2003) Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy. Phys Med Biol, 48(11): 1605-1623. [DOI:10.1088/0031-9155/48/11/309] [PMID]
37. Matsufuji N, Komori M, Sasaki H, Akiu K, Ogawa M, Fukumura A, et al. (2005) Spatial fragment distribution from a therapeutic pencil-like beam in water. Phys Med Biol, 50(14): 3393-3403. [DOI:10.1088/0031-9155/50/14/014] [PMID]
38. Gunzert-Marx K, Iwase H, Schardt D, Simon RS. 2008 Secondary beam fragments produced by 200 MeV u-1 12C ions in water and their dose contributions in carbon ion radiotherapy. New J Phys, 10: 075003. [DOI:10.1088/1367-2630/10/7/075003]
39. Haettner E, Iwase H, Krämer M, Kraft G, Schardt D. 2013 Experimental study of nuclear fragmentation of 200 and 400 MeV/n 12C ions in water for applications in particle therapy. Phys Med Biol, 58(23): 8265-8279. [DOI:10.1088/0031-9155/58/23/8265] [PMID]
40. Qi M, Yang Q, Chen X, Duan J, Yang L (2021) Fast calculation of mont carlo ion transport code. Journal of Physics, Conference Series 1739, 012030. https://doi.org/10.1088/1742-6596/2044/1/012030 [DOI:10.1088/1742-6596/1739/1/012030]
41. Ekinci F, Bostanci E, Dagli O, Guzel MS (2021) Analysis of Bragg Curve parameters and lateral straggle for proton and carbon beam. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 63(1): 32-41. [DOI:10.33769/aupse.864475]
42. Burigo L, Pshenichnov I, Mishustin I, Bleicher M (2015) Comparative study of dose distributions and cell survival fractions for 1H, 4He, 12C and 16O beams using Geant4 and Microdosimetric Kinetic model. Phys Med Biol, 60(8): 3313-31. [DOI:10.1088/0031-9155/60/8/3313]
43. Hajiloo N, Akbari M, Malekie S (2021) Evaluation of water equivalent ratio (WER) values for polyethylene, polymethyl methacrylate, polystyrene, lead, tungsten and aluminum at helium ion energies ranging from 25-250 MeV/u through Monte Carlo simulation. Int J Radiat Res, 19(3): 661-668. [DOI:10.52547/ijrr.19.3.661]
44. Bechchar R, Senhou N, ghassoun J (2019) A fast and accurate analytical method for 2D dose distribution calculation around brachytherapy sources in various tissue equivalent phantoms. Int J Radiat Res, 17(4): 531-540.
45. Ahmadi Ganjeh Z, Eslami-Kalantari M, Ebrahimi Loushab M, Mowlavi A (2020) Investigation of the direct DNA damages irradiated by protons of different energies using geant4-DNA toolkit. Int J Radiat Res, 18(4): 809-815. [DOI:10.52547/ijrr.18.4.809]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ekinci F, Bostanci E, Güzel M, Dagli O. Simulation based analysis of 4He, 7Li, 8Be and 10B ions for heavy ion therapy. Int J Radiat Res 2023; 21 (1) :131-137
URL: http://ijrr.com/article-1-4599-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652