[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 2 (4-2023) ::
Int J Radiat Res 2023, 21(2): 195-201 Back to browse issues page
Investigating geometric and dosimetric accuracy of auto-segmentation contours in stereotactic body radiation therapy for early peripheral non-small cell lung cancer
Z. Chen , X. Lv , Y. Bai , L. Xu , W. Shao
Abstract:   (1130 Views)
Background: The geometric and dosimetric accuracy of auto-segmentation OAR are of key importance for radiation oncologists who use auto-segmentation instead of manual segmentation. This study investigates the geometric and dosimetric accuracy of auto-segmentation OAR for early peripheral NSCLC using an artificial intelligence cloud online platform (AI Contour). Materials and Methods: AI Contour was used to perform the contour segmentation of OAR on twenty patients with early peripheral NSCLC, to evaluate geometric and dosimetric accuracies. Manual segmentation and auto-segmentation were performed to depict the outlines of the heart, lung, trachea, esophagus, and spinal cord. For geometric accuracy, the authors acquired and compared the Dice similarity coefficient, Jaccard coefficient, Hausdorf distance, Center of mass deviation, Inclusive index, and Sensitivity index. For dosimetric accuracy, the dose statistical differences between manual- and auto-segmentation were analyzed. The absolute irradiation volume deviation (AVD) and volume percentage deviation (VPD) for the V5, V10, V15, and V20 of the lungs were assessed. The absolute irradiation dose deviation (ADD) and dose percentage deviation (DPD) for OAR were evaluated. Results: The DSC for each OAR was higher than 0.77. The dosimetric difference between manual and auto-segmentation was small and not significant (p>0.05). For the lung, the AVD was less than 7 mL, the VPD was less than 3%, the ADD of OAR was at most 0.4 Gy, and the DPD was less than 4%. Conclusion: The accuracy of the auto-segmented OAR for early peripheral NSCLC was acceptable based on AI Contour.
Keywords: Artificial intelligence cloud, auto-segmentation, early peripheral NSCLC, SBRT.
Full-Text [PDF 779 kb]   (678 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Dewas S, Bibault JE, Blanchard P, Vautravers DC, et al. (2011) Delineation in thoracic oncology: a prospective study of the effect of training on contour variability and dosimetric consequences. Radiat Oncol, 6(1): 1-9. [DOI:10.1186/1748-717X-6-118] [PMID] []
2. Altorjai G, Fotina I, Lütgendorf CC, Stock M, et al. (2012) Cone-beam CT-based delineation of stereotactic lung targets: the influence of image modality and target size on interobserver variability. Int J Radiat Oncol Biol Phys, 82(2): 265-272. [DOI:10.1016/j.ijrobp.2011.03.042] [PMID]
3. Persson GF, Nygaard DE, Hollensen C, et al. (2012) Interobserver delineation variation in lung tumor stereotactic body radiotherapy. Br J Radiol, 85(1017): 654-660. [DOI:10.1259/bjr/76424694] [PMID] []
4. Vinod SK, Jameson MG, Min M, Holloway LC (2016) Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother Oncol, 121(2): 169-179. [DOI:10.1016/j.radonc.2016.09.009] [PMID]
5. Wee CW, An HJ, Kang HC, Kim HJ, Wu HG (2018) Variability of gross tumor volume delineation for stereotactic body radiotherapy of the lung with Tri-60Co magnetic resonance image-guided radiotherapy system (ViewRay): A comparative study with magnetic resonance- and computed tomography-based target delineation. Technol Cancer Res Treat, 17: 1-7. [DOI:10.1177/1533033818787383] [PMID] []
6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6): 394-424. [DOI:10.3322/caac.21492] [PMID]
7. Chen W, Zheng R, Baade PD, Zhang S, et al. (2016) Cancer statistics in China, 2015. CA Cancer J Clin, 66(2): 115-132. [DOI:10.3322/caac.21338] [PMID]
8. Chang JY, Senan S, Paul MA, et al. (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomized trials. Lancet Oncol, 16(6): 630-637. [DOI:10.1016/S1470-2045(15)70168-3]
9. Shinde A, Li R, Kim J, Salgia R, Hurria A, Amini A (2018) Stereotactic body radiation therapy (SBRT) for early-stage lung cancer in the elderly. Semin Oncol, 45(4): 210-219. [DOI:10.1053/j.seminoncol.2018.06.002] [PMID]
10. Prezzano KM, Ma SJ, Hermann GM, Rivers CI, et al. (2019) Stereotactic body radiation therapy for non-small cell lung cancer: A review. World J Clin Oncol, 10(1): 14-27. [DOI:10.5306/wjco.v10.i1.14] [PMID] []
11. Wang C, Tyagi N, Rimner A, Hu Y, et al. (2019) Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network. Radiother Oncol, 131: 101-107. [DOI:10.1016/j.radonc.2018.10.037] [PMID] []
12. Song Y, Hu J, Wu Q, Xu F, Nie S, et al. (2020) Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy. Radiother Oncol, 145: 186-192. [DOI:10.1016/j.radonc.2020.01.020] [PMID]
13. Benedict SH, Yenice KM, Followill D, et al. (2010) Stereotactic body radiation therapy: The report of AAPM Task Group101. Med Phys, 37(8): 4078-4101. [DOI:10.1118/1.3438081] [PMID]
14. Hanna GG, Murray L, Patel R, et al. (2018) UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol, 30(1): 5-14. [DOI:10.1016/j.clon.2017.09.007] [PMID]
15. Zunair H and Hamza AB (2021) Sharp U-Net: depthwise convolutional network for biomedical image segmentation. Comput Biol Med, 136: 1-13. [DOI:10.1016/j.compbiomed.2021.104699] [PMID]
16. Sun Y, Shi H, Zhang S, Wang P, et al. (2019) Accurate and rapid CT image segmentation of the eyes and surrounding organs for precise radiotherapy. Med Phys, 46(5): 2214-2222. [DOI:10.1002/mp.13463] [PMID]
17. Sharma A and Kaur P (2021) TOSDS: Tenant-centric Object-based Software Defined Storage for Multitenant SaaS Applications. Arab J Sci Eng, 46(9): 9221-9235. [DOI:10.1007/s13369-021-05743-z] [PMID] []
18. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology, 26(3): 297-302. [DOI:10.2307/1932409]
19. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol, 11(2): 37-50. [DOI:10.1111/j.1469-8137.1912.tb05611.x]
20. Taha AA and Hanbury A (2015) An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell, 37(11): 2153-2163. [DOI:10.1109/TPAMI.2015.2408351] [PMID]
21. Macchia ML, Fellin F, Amichetti M, Cianchetti M, et al. (2012) Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate, and pleural cancer. Radiat Oncol, 7(1):1-16. [DOI:10.1186/1748-717X-7-160] [PMID] []
22. Tsuji SY, Hwang A, Weinberg V, Yom SS, et al. (2010) Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 77(3): 707-714. [DOI:10.1016/j.ijrobp.2009.06.012] [PMID]
23. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging, 13(4): 716-724. [DOI:10.1109/42.363096] [PMID]
24. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging, 28(8): 1266-1277. [DOI:10.1109/TMI.2009.2014372] [PMID]
25. Daisne JF and Blumhofer A (2013) Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation. Radiat Oncol, 8 (1):1-11. [DOI:10.1186/1748-717X-8-154] [PMID] []
26. Sjöberg C, Lundmark M, Granberg C, Johansson S, et al. (2013) Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients. Radiat Oncol, 8(1): 224-229. [DOI:10.1186/1748-717X-8-229] [PMID] []
27. Lustberg T, van Soest J, Gooding M, et al. (2018) Clinical evaluation of atlas and deep learning-based automatic contouring for lung cancer. Radiother Oncol, 126(2): 312-317. [DOI:10.1016/j.radonc.2017.11.012] [PMID]
28. Dijk V, Lisanne V, Bosch VD, et al. (2020) Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol, 142: 115-123. [DOI:10.1016/j.radonc.2019.09.022] [PMID]
29. Kaderka R, Gillespie EF, Mundt RC, et al. (2019) Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients. Radiother Oncol, 131: 215-220. [DOI:10.1016/j.radonc.2018.07.013] [PMID]
30. Fung N, Hung WM, Sze CK, et al. (2020) Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis. Med Dos, 45(1): 60-65. [DOI:10.1016/j.meddos.2019.06.002] [PMID]
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chen Z, Lv X, Bai Y, Xu L, Shao W. Investigating geometric and dosimetric accuracy of auto-segmentation contours in stereotactic body radiation therapy for early peripheral non-small cell lung cancer. Int J Radiat Res 2023; 21 (2) :195-201
URL: http://ijrr.com/article-1-4678-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (4-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4660