[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 21, Issue 2 (4-2023) ::
Int J Radiat Res 2023, 21(2): 217-226 Back to browse issues page
Determination the dosimetric properties of scattering foil and scattering foil free electron beams in clinical linear accelerator
M. Zabihzadeh , Z. Sedaghat , H. Shahbazian
Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran , z.sedaghat875@gmail.com
Abstract:   (1096 Views)
Background: Producing the ideal therapeutic electron beams from a clinical linear accelerator (Linac), is crucial to optimize dose delivery in radiotherapy. The aim of this study was to investigate the properties of electron beams with and without the scattering foil. Materials and Methods: Varian Linac 2100CD head was simulated by means of MCNPX-2.7 program. After validation with measured data, scattering foils were removed and then different dosimetric properties of 6 and 9 MeV electron beams such as depth dose percentage, dose profile, range, surface dose, dose rate and photon contamination were calculated and compared for field sizes ranging from 0.25×0.25 to 10×10 cm2 in three states with primary and secondary scattering foil (SF), without primary scattering foil (PSFF) and without primary and secondary scattering foil (SFF). Results: By removing the scattering foils, dose rates and surface doses were increased more than 25 times in 0.25×0.25 cm2 field, and in the bigger fields, it was less in 10×10 cm2 field, almost 4 times and the photon contamination is reduced by 20% times in 0.25×0.25 cm2 field. Also, Adjacent organs receive a lower dose, Because the dose profile curve was shrieked, it was almost 1cm in field 2×2 cm2 and less than 1cm in other fields. The dose profile flatness was diminished in scattering foil-free (SFF) mode which is not crucial for the small fields. Conclusion: Removing scattering foil improves dosimetric properties of electron beams specially to treat the superficial tumors and for the small field radiotherapy.
Keywords: Electron beam, linear accelerator, Monte Carlo calculation, radiotherapy, scattering foil, small field.
Full-Text [PDF 1255 kb]   (914 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. 1. Connell T, Alexander A, Evans M, Seuntjens J (2012) An experimental feasibility study on the use of scattering foil free beams for modulated electron. Phys Med Biol, 57: 3259-3272. [DOI:10.1088/0031-9155/57/11/3259] [PMID]
2. Ye S, Pareek PN, Spencer S, Duan J, Brezovich IA, Ye S, et al. (2005) Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations. Medical Physics, 32: 1460. [DOI:10.1118/1.1924368] [PMID]
3. You A, Be M, In I (2017) The detector characteristics for output factor measurement of small field electron beams The Detector Characteristics for Output Factor Measurement of Small Field Electron Beams. AIP Conference Proceedings, 1862: 030072. [DOI:10.1063/1.4991176]
4. Ma CM, Faddegon BA, Rogers DWO, Mackie TR (1997) Accurate characterization of Monte Carlo calculated electron beams for radiotherapy. Med Phys, 24(3): 401-16. [DOI:10.1118/1.597908] [PMID]
5. Oh SA, Kang MK, Yea JW, Kim SK, Oh YK (2012) Study of the penumbra for high-energy photon beams with GafchromicTM EBT2 films. Journal of the Korean Physical Society, 60(11): 1973-6. [DOI:10.3938/jkps.60.1973]
6. Mahmoudi A, Geraily G, Shirazi A, Hadisi nia T (2019) Penumbra reduction technique and factors affecting it in radiotherapy machines - Review study. Radiation Physics and Chemistry, 157: 22-7. [DOI:10.1016/j.radphyschem.2018.12.016]
7. Lax I and Brahme A (1980) Collimation of high energy electron beams Acta Oncologica. 19(3):199-207. [DOI:10.3109/02841868009130153] [PMID]
8. Klein EE, Li Z, Low DA (1996) Feasibility study of multileaf collimated electrons with a scattering foil based accelerator. Radiotherapy and Oncology, 41: 189-96. [DOI:10.1016/S0167-8140(96)01822-1] [PMID]
9. Klein E and Low D (1995) Changes in electron beam dosimetry with a new scattering foil-applicator system on a CL2100C. Int Radiation Oncology Biol Phys, 32(2): 483-490. [DOI:10.1016/0360-3016(94)00452-Q]
10. Bennett LC and Vassiliev ON (2016) Examination of out-of-field dose and penumbral width of flattening filter free beams in medical linear accelerators. Proceedings of NAPAC, Chicago, IL, USA 396-8.
11. Mohammed M, Chakir E, Boukhal H, Mroan S, El Bardouni T (2017) Evaluation of the dosimetric characteristics of 6 MV flattened and unflattened photon beam. Journal of King Saud University - Science, 29(3): 371-9. [DOI:10.1016/j.jksus.2016.09.008]
12. Bjärngard BE, Piontek RW, Svensson GK (1976) Electron scattering and collimation system for a 12 MeV linear accelerator. Medical Physics, 3(3): 153-8. [DOI:10.1118/1.594281] [PMID]
13. Kainz KK, Antolak JA, Almond PR, Bloch CD, Hogstrom KR (2005) Dual scattering foil design for poly-energetic electron beams. Phys Med Biol, 50: 755-767. [DOI:10.1088/0031-9155/50/5/002] [PMID]
14. Akbarpoor R, Khaledi N, Wang X, Samiei F (2019) U. Optimization of low-energy electron beam production for superficial cancer treatments by Monte Carlo code. J Can Res Ther, 15: 475-9. [DOI:10.4103/jcrt.JCRT_203_18] [PMID]
15. Titt U, Vassiliev ON, Pönisch F, Dong L, Liu H, Mohan R (2006) A flattening filter free photon treatment concept evaluation with Monte Carlo. Medical Physics, 33(6): 1595-602. [DOI:10.1118/1.2198327] [PMID]
16. Vassiliev ON, Titt U, Pönisch F, Kry SF, Mohan R, Gillin MT (2006) Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Physics in Medicine and Biology, 51(7): 1907-17. [DOI:10.1088/0031-9155/51/7/019] [PMID]
17. Arjune B, Gilbert LD, Thekkumthala J (1991) Characteristic parameters of 6-21 MeV electron beams from a 21 MeV linear acceleratora). Medical Physics, 18(4): 821-8. [DOI:10.1118/1.596637] [PMID]
18. Olofsson L, Karlsson MG, Karlsson M (2005) Effects on electron beam penumbra using the photon MLC to reduce bremsstrahlung leakage for an add-on electron MLC. Phys Med Biol, 50: 1191-1203. [DOI:10.1088/0031-9155/50/6/010] [PMID]
19. Palta JR, Daftari IK, Ayyangar KM, Suntharalingam N (1990) Electron beam characteristics on a Philips SL25. Medical Physics, 17(1): 27-34. [DOI:10.1118/1.596524] [PMID]
20. Mesbahi A, Mehnati P, Keshtkar A, Farajollahi A (2007) Dosimetric properties of a flattening filter-free 6-MV photon beam: a Monte Carlo study. Radiat Med, 25: 315-32421. [DOI:10.1007/s11604-007-0142-6] [PMID]
21. Baghani HR and Aminafshar B (2019) In-field radiation contamination during intraoperative electron radiation therapy with a dedicated accelerator. Applied Radiation and Isotopes, 155: 108918. [DOI:10.1016/j.apradiso.2019.108918] [PMID]
22. Ng J and Shuryak I (2014) Minimizing second cancer risk following radiotherapy: Current perspectives. Cancer Management and Research, 7: 1-11. [DOI:10.2147/CMAR.S47220] [PMID] []
23. Sorcini BB, Hyödynmaa S, Brahme A (1996) The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry. Physics in Medicine and Biology,41(12): 2657-77. [DOI:10.1088/0031-9155/41/12/006] [PMID]
24. Eldib A, Jin L, Li J (2014) Investigation of the clinical potential of scattering foil free electron beams. Phys Med Biol, 59: 819-836. [DOI:10.1088/0031-9155/59/4/819] [PMID]
25. Laliæ D (2001) Comparison of measured and Monte Carlo calculated electron beam central axis depth dose in water. Archive of Oncology, 9(2): 83-7.
26. Khaledi N, Aghamiri MR, Aslian H, Ameri A (2017) Tabulated square‑shaped source model for linear accelerator electron beam simulation. J Can Res Ther, 13: 69-79. [DOI:10.4103/0973-1482.206235] [PMID]
27. Ulya S, Wibowo WE, Nuruddin N, Pawiro SA (2017) Dosimetric characteristics of gafchromic EBT3 film on small field electron beam. J Phys, Conf. Ser. 851 012023. [DOI:10.1088/1742-6596/851/1/012023]
28. Keivan H, Shahbazi-Gahrouei D, Shanei A (2018) Evaluation of dosimetric characteristics of diodes and ionization chambers in small megavoltage photon field dosimetry. Int J Radiat Res,16(3): 311-321.
29. Sung W, Park JI, Kim J-i, Carlson J, Ye S-J, Park JM (2017) Monte Carlo simulation forscanning technique with scattering foil free electron beam: A proof of concept study. PLoS ONE, 12(5): e0177380. [DOI:10.1371/journal.pone.0177380] [PMID] []
30. Varan Parto Darman, http://varanparto.com/fa/
31. Shimozato T, Okudaira K, Fuse H, Tabushi K (2013) Monte Carlo simulation and measurement of radiation leakage from applicators used in external electron radiotherapy. Physica Medica, 29(4): 388-396. [DOI:10.1016/j.ejmp.2012.06.006] [PMID]
32. Pelowitz DB. MCNPX TM User ' S Manual. 2008;
33. Lloyd CJ, Haeck W, Neudecker D, Kent Parsons D, White MC. LA-UR-18-24034: Release of ENDF/B-VIII.0-Based ACE Data Files. 2018;15. Available from: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-24034
34. Khan FM and Gibbons JP (2014) Khan's the physics of radiation therapy. Lippincott Williams & Wilkins.
35. OriginLab - Origin and OriginPro - Data Analysis and Graphing Software https://www.originlab.com/
36. Kato T, Omachi S, Aso H (2002) Asymmetric Gaussian and its application to pattern recognition. Lecture Notes in Computer Science. SSPR, 2396: 405-13. [DOI:10.1007/3-540-70659-3_42]
37. Bj P and Kn T (2002) Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions. Phys Med Biol, 47: 4019-4041. [DOI:10.1088/0031-9155/47/22/308] [PMID]
38. Sangeetha S and Sureka CS (2017) Comparison of Flattening Filter (FF) and Flattening-Filter-Free (FFF) 6 MV photon beam characteristics for small field dosimetry using EGSnrc Monte Carlo code. Radiation Physics and Chemistry. Elsevier, 135: 63-75. [DOI:10.1016/j.radphyschem.2017.02.029]
39. Bieda MR, Antolak JA, Hogstrom KR (2001) The effect of scattering foil parameters on electron-beam Monte Carlo calculations. Med Phys, 12(492): 2527-34. [DOI:10.1118/1.1420387] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zabihzadeh M, Sedaghat Z, Shahbazian H. Determination the dosimetric properties of scattering foil and scattering foil free electron beams in clinical linear accelerator. Int J Radiat Res 2023; 21 (2) :217-226
URL: http://ijrr.com/article-1-4681-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (4-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652